• 快讯 Cell | 3D重构人类原肠期胚胎

    来源专题:战略生物资源
    编译者:李康音
    发布时间:2024-04-24
    2024年4月23日,中国科学院动物研究所和北京干细胞与再生医学研究院的于乐谦研究员、郭靖涛研究员、中国农业大学魏育蕾教授、及中国科学院动物研究所王晓琰博士合作在Cell上发表了题为3D Reconstruction of a Gastrulating Human Embryo的文章。本研究基于一枚珍贵的CS8时期完整人类胚胎,利用连续横断面(transverse plane)高分辨空间转录组切片,结合机器学习算法进行三维对齐,构建了完整胚胎中不同细胞类型与基因表达的三维空间分布点云图,进而数字3D重构了首个完整人类原肠胚模型。 人的生命始于精子与卵子融合形成受精卵,受精卵经历卵裂形成囊胚,囊胚在6-7天时种植到母体子宫进一步发育。第14天开始,胚胎经历原肠运动,胚胎后部细胞发生大规模定向迁移,并形成原条(Primitive Streak)。通过人类原肠胚的3D重构,可以让我们精确地看到每一种细胞在胚胎中的相对分布位置。将空间位置信息与细胞类群信息、基因表达信息相结合,让我们能够更加精确地定义不同的细胞类型,并且分析其与周围细胞的作用关系。以中胚层细胞的形成为例,目前中胚层的迁移过程尚不清楚。在本工作中,借助3D重构胚胎,依据空间位置和特征基因进行分析,研究者发现在原条位置上,各类中胚层亚群,包括轴向中胚层(Axial Mesoderm)、近轴中胚层(Paraxial Mesoderm)、中间中胚层(Intermediate Mesoderm)、侧板中胚层(Lateral Plate Mesoderm)、以及胚外中胚层前体细胞(Extraembryonic Mesoderm progenitor)等,沿着头端自尾端(A-P轴)的方向顺利排列。这表明中胚层很有可能在尚未迁出原条时就已经发生了细胞命运决定,并依据决定好的命运迁移到相应位置上。该工作填补了原肠胚阶段人类胚胎各细胞谱系发育知识空白。 更重要的是,3D重构的空间位置信息使得研究者们可以去探索原肠运动过程中另外一个重要的事件,即体轴形成。哺乳动物的躯体有三条体轴:头-尾轴(A-P),背-腹轴(D-V),以及左-右轴(L-R),各种组织器官沿其依序排列。我们已知在脊椎动物胚胎发育过程中,主要依赖于一类被称为组织中心(Organizer)的细胞作用,令躯体三条体轴逐渐建立。本研究中关注了七条发育过程中的重要细胞信号通路(FGF/WNT/TGF-β/SHH/NODAL/BMP/RA pathway),并整合空间分布信息,分析了在轴向建立的过程中信号配受体等的表达情况,发现在该时期人类胚胎尾部很可能存在一个和中部脊索类似的组织中心,为窥探人类极早期胚胎发育打开了一扇全新的大门。
  • 快讯 Cell | AARS1乳酸化抑制p53从而促癌

    来源专题:战略生物资源
    编译者:李康音
    发布时间:2024-04-24
    2024年4月22日,苏州大学周芳芳通讯在Cell发表题为Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis的文章,发现肿瘤来源的乳酸抑制肿瘤抑制因子p53的活性。这一发现揭示了细胞代谢与参与癌症进展的关键蛋白调节之间的复杂相互作用。 作者发现,丙氨酰tRNA合成酶1(Alanyl-tRNA synthetase, AARS1),一种传统上以其在蛋白质翻译中的作用而闻名的酶,是一种乳酸传感器和负责全局赖氨酸乳酸化的乳酰基转移酶。通过全基因组CRISPR筛选,AARS1被鉴定为介导乳酸诱导的p53活性抑制的关键参与者。值得注意的是,研究人员发现AARS1直接与乳酸结合,并以ATP依赖的方式催化乳酸-AMP(一种促进乳酸共价转移到靶蛋白赖氨酸残基的中间体)的形成。AARS1作为乳酰基转移酶的这一新功能突出了这种古老酶的进化保守性和多功能性。 该研究聚焦于肿瘤抑制因子p53,揭示了AARS1介导的乳酸化靶向p53 DNA结合域内的特定赖氨酸残基K120和K139。利用一种创新的遗传密码扩展策略,研究人员产生了位点特异的乳基化p53变体。令人惊讶的是,这些乳基化的p53变体表现出DNA结合受损、液-液相分离(LLPS)减弱和转录活性降低的特征,最终导致肿瘤发生。 此外,研究人员证明,K120和K139的疾病相关突变模仿了乳酰化的作用,在LLPS和肿瘤抑制能力方面表现出类似的缺陷。这一发现为在各种恶性肿瘤中观察到的突变型p53变体的功能损害提供了机制解释。然后,作者研究揭示了人类癌症样本中AARS1表达、整体蛋白质组乳酸化和p53乳酸化之间的正相关性,强调了这些发现的临床相关性。研究人员发现广泛使用的运动补充剂β-丙氨酸是AAR1-介导的乳腺酸化的抑制剂,可防止p53失活并提高癌症化疗的疗效。 总之,这项开创性的研究不仅揭示了一种将细胞代谢与p53功能联系起来的新的调节机制,而且提供了令人兴奋的治疗机会。通过靶向AAR1-介导的乳酰化,研究人员可能能够恢复p53的肿瘤抑制活性,为癌症治疗策略开辟新的途径。此外,AARS1作为一种乳酰基转移酶的鉴定扩展了我们对翻译后修饰调控格局的理解,为进一步探索代谢和蛋白质功能在各种生物过程中的相互作用铺平了道路。
  • 快讯 Cell | 可编程控制哺乳动物细胞死亡的合成蛋白质电路

    来源专题:战略生物资源
    编译者:李康音
    发布时间:2024-04-24
    2024年4月23日,霍华德·休斯医学研究所和加州理工学院(帕萨迪纳)的研究人员在Cell发表了题为Synthetic protein circuits for programmable control of mammalian cell death的文章。 细胞凋亡和裂解等天然细胞死亡途径具有双重作用:它们既能清除有害细胞,又能通过抑制或刺激炎症来调节免疫系统。能够在靶细胞中触发特定死亡程序的合成蛋白质回路同样可以清除有害细胞,同时适当调节免疫反应。然而,细胞会主动影响它们的死亡模式,以响应自然信号,因此控制死亡模式具有挑战性。 该研究介绍了受自然启发的 "同步凋亡 "回路,它通过蛋白水解来调节工程刽子手蛋白和哺乳动物细胞的死亡。这些电路可引导细胞死亡模式,对蛋白酶输入的组合做出反应,并选择性地消灭靶细胞。此外,同步凋亡回路还能在细胞间传播,为工程合成杀伤细胞提供了基础,这些细胞能在靶细胞中诱导所需的死亡程序,而不会自我毁灭。这些结果为哺乳动物细胞死亡的可编程控制奠定了基础。
  • 快讯 Cell | 揭示造血干细胞微环境的建立和维持具有不同的对表观转录组调控的依赖性

    来源专题:战略生物资源
    编译者:李康音
    发布时间:2024-04-24
    2024年4月23日,哥伦比亚大学 Irving Medical Center的丁磊团队在Cell上发表了题为Hematopoietic stem cell niche generation and maintenance are distinguishable by an epitranscriptomic program的文章,揭示作为造血干细胞微环境的间充质细胞在建立和维持过程中表现出不同的对表观转录组调控的依赖性。 因为骨髓造血干细胞微环境是在围产期建立的,那么调节骨髓间充质细胞形成的分子机制应该是在围产期的细胞中特异表达的。根据这条线索,作者们首先从单细胞转录组入手,比较了小鼠围产期和成体骨髓间充质细胞的基因表达差异,发现与mRNA N6-腺苷酸甲基化(m6A)修饰相关的基因在围产期的细胞中明显富集。m6A修饰是由包含多个成分的蛋白质复合物催化的,其中METTL3具有关键的催化活性。围产期骨髓间充质细胞表达更高水平的METTL3,提示m6A和METTL3可能是间充质细胞建立所必需的。接着,为了验证这个假说,作者们敲除了小鼠发育期的骨髓间充质细胞中的Mettl3基因,发现这显著影响骨髓微环境的形成,造成造血干细胞的数量和功能的缺失。 通过单细胞测序、免疫荧光染色、细胞谱系示踪等技术,作者们发现在骨髓微环境形成的过程中敲除Mettl3后,骨髓间充质细胞的细胞命运发生显著改变,表现为它们表达更低水平的SCF、CXCL12等因子,而更倾向于向成骨细胞的分化。骨髓间充质细胞中的甲基化mRNA测序提示转录因子Klf2是Mettl3的靶基因之一。Klf2的表达量在Mettl3敲除的骨髓间充质细胞中显著增加。在Mettl3敲除的小鼠上进一步敲除Klf2可以弥补骨髓微环境的形成和造血干细胞数目与功能上的缺陷。与此不同的是,敲除成体骨髓间充质细胞中的Mettl3并不影响造血干细胞的数量和功能。换句话说,这个分子机制只在骨髓微环境的间充质细胞在发育过程中的建立起到关键的作用。这是第一个被发现的特异的调节骨髓微环境的形成的分子机制。 这项研究揭示了作为造血干细胞微环境重要成分的骨髓间充质细胞在建立和维持时具有不同的分子调控机制,为体外和体内构建和再生支持造血干细胞扩增的微环境等再生医学研究提供了重要线索。比如利用这个发现,我们可能将来可以生成更多的微环境来支持造血干细胞用以治疗血液系统疾病。另外,这项工作可以推广到别的组织中的成体干细胞:微环境的形成和发育机制需要更加深入的研究。
  • 快讯 Cell | 新冠病毒逃逸NKG2D杀伤的机制

    来源专题:战略生物资源
    编译者:李康音
    发布时间:2024-04-24
    2024年4月22日,麻省总医院Ragon研究所Wilfredo F. Garcia-Beltran、Julie Boucau共同通讯在Cell发表题为Evasion of NKG2D-mediated cytotoxic immunity by sarbecoviruses的文章,作者揭示了SARS-CoV-2和其他sarbecovirus逃避自然杀伤细胞和CD8+T细胞上NKG2D受体介导的细胞毒性细胞的一种新策略。 研究人员证明,SARS-CoV-2感染会导致受感染细胞表面NKG2D配体,特别是MIC-A/B的下调。进一步地,研究人员在体外实验发现这种下调是通过蛋白水解脱落发生的,且在新冠肺炎患者的人肺组织异种移植物和呼吸样本中得到了验证。而且,新冠肺炎患者血清可溶性MIC-A和MIC-B水平升高,与疾病严重程度相关。 通过对SARS-CoV-2蛋白的系统测试,作者确定辅助蛋白(accessory protein)ORF6是导致MIC-A/B脱落的罪魁祸首。而ORF6在感染各种哺乳动物的sarbecovirus中是唯一保守的,这表明其进化适应可以逃避NKG2D介导的细胞毒性免疫——NKG2D在哺乳动物中是高度保守的。尽管有这种免疫逃避策略,但研究表明,NK细胞能有效识别并消除受SARS-CoV-2感染的细胞,限制病毒传播。有趣的是,NK细胞的CD56-bright亚群对SARS-CoV-2感染的细胞表现出最强烈的反应,挑战了这些细胞毒性较小的传统观念。 作者证明,用单克隆抗体7C6抑制MIC-A/B脱落,可以以NKG2D依赖的方式进一步增强了NK细胞对SARS-CoV-2感染细胞的识别和杀伤。这一发现突出了7C6作为新冠肺炎和未来非典病毒爆发的免疫疗法的潜在治疗价值。 总之,这项研究阐明了SARS-CoV-2的一种新的免疫逃避策略,并确定了导致这种策略的罪魁祸首病毒蛋白ORF6。此外,它揭示了治疗干预7C6的潜力。这些发现有助于我们理解宿主与病原体的相互作用。