...

《量子信息科技动态快报》

  • 来源专题:量子信息科技
  • 编译类型:快报,简报类产品
  • 发布时间:2023-11-30
量子信息科技动态快报旨在刊载量子通信、量子计算和量子精密测量等方面的最新重要消息,为行业用户提供高质量情报编译信息,促进我国量子信息科技领域的交流与合作,助力量子信息科技生态建设。
  • 九章光量子计算原型机求解图论问题
    于杰平
      中国科学技术大学潘建伟、陆朝阳、刘乃乐等组成的研究团队基于“九章”光量子计算原型机完成了对“稠密子图”和“Max-Haf”两类图论问题的求解,通过实验和理论研究了“九章”处理这两类图论问题为搜索算法带来的加速,及该加速对于问题规模和实验噪声的依赖关系。该研究成果系首次在具有量子计算优越性的光量子计算原型机上开展的面向具有应用价值问题的实验研究。相关论文2023年5月9日以“编辑推荐”的形式发表在国际知名学术期刊《物理评论快报》上,并被Physics网站专题报道。     2019年底,美国谷歌公司利用超导量子比特宣布实现“量子计算优越性”,但随之经典模拟算法取得快速发展,谷歌的这一宣称受到挑战。2020年,中国科大潘建伟团队成功构建了76个光子100个模式的高斯玻色取样量子计算原型机“九章”,首次达到基于光子的“量子计算优越性”里程碑。2021年,潘建伟团队进一步成功研制了 “祖冲之二号”和“九章二号”,使得我国成为唯一在两种技术路线都达到了“量子计算优越性”的国家。   目前,仅有谷歌、中国科大、以及加拿大Xanadu三个团队实现了“量子计算优越性”的目标。而只有在实现“量子计算优越性”的基础上,量子计算应用的实验研究才有望带来量子加速。因此,国际学术界下一阶段的一个重要科研目标是探索利用量子计算原型机演示具有实用价值的问题的求解。   近期,潘建伟团队在继续发展更高质量和更强拓展性的光量子计算原型机的同时,开展了将“九章”所执行的高斯玻色采样任务应用于图论问题的研究探索。图论起源于著名的“哥尼斯堡七桥问题”,被广泛用于描述事物之间的关系,例如社交网络、分子结构和计算机科学中的许多问题均可对应到图论问题。高斯玻色采样与图论问题具有紧密的数学联系,通过将高斯玻色采样设备的每个输出端口映射到图的顶点,将每个探测到的光子映射到子图的顶点,研究人员可以利用实验得到的样本加速搜索算法寻找具有更大密度或Hafnian的子图的过程,从而帮助这两类图论问题的求解。这两类图论问题在数据挖掘、生物信息、网络分析和某些化学模型研究等领域具有重要应用。该工作中,研究人员首次利用“九章”执行的高斯玻色采样来加速随机搜索算法和模拟退火算法对图论问题的求解。研究人员在实验中使用了超过20万个80光子符合计数样本,相比全球最快超级计算机使用当前最优经典算法精确模拟该实验的速率快约1.8亿倍。      论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.190601   Physics网站报道:https://physics.aps.org/articles/v16/s64

    发布时间: 2023-10-12

  • 中国科大在量子点-谐振腔杂化系统的动力学驱动研究中取得重要进展
    于杰平
     中国科大郭光灿院士团队在半导体量子点-微波谐振腔杂化系统的动力学驱动研究中取得重要进展。该团队郭国平教授和曹刚教授等人与马德里材料科学研究所西格蒙德·科勒(Sigmund Kohler)高级研究员以及本源量子计算有限公司合作,从实验和理论上研究了非色散耦合的受驱量子点-微波谐振腔杂化系统,发展并验证了一种可适用于不同耦合强度和多量子比特系统的响应理论方法。研究成果以“Probing Two Driven Double Quantum Dots Strongly Coupled to a Cavity”为题,作为封面文章发表在6月9日出版的国际物理知名期刊《Physical Review Letters》上。     论文链接:https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.233602

    发布时间: 2023-10-12

  • 中国科大在可扩展多体纠缠态的制备和测控方面取得重要进展
    于杰平
    中国科学技术大学潘建伟、苑震生等与清华大学马雄峰、复旦大学周游合作,使用光晶格中束缚的超冷原子,通过制备二维原子阵列、产生原子比特纠缠对、连接纠缠对的分步扩展方式制备了多原子纠缠态,并通过显微学技术调控和观测了其纠缠性质,向制备和测控大规模中性原子纠缠态迈出重要一步。这项研究成果近日发表在国际权威学术期刊《物理评论快报》上,美国物理学会“Physics”以《光晶格量子计算机的里程碑》(Milestone for Optical-Lattice Quantum Computer)为题作了报道。  量子纠缠是量子计算的核心资源,量子计算的能力将随纠缠比特数目的增长呈指数增长。因而,大规模纠缠态的制备、测量和相干操控是该研究领域的核心问题。在实现量子比特的众多物理体系中,光晶格中的超冷原子比特具备良好的相干性、可扩展性和高精度的量子操控性,成为实现量子信息处理的理想物理体系之一。自2010年开始,中国科大研究团队系统地研究了光晶格中原子的多体相变、原子相互作用、熵分布动力学等,并于2020年实现纠缠保真度为99.3%的1000多对原子纠缠态[Nature Physics 12, 783(2016);Nature Physics 13, 1195(2017); Science, 369, 550(2020)]。这一系列研究工作推动了原子纠缠对保真度的提升和原子并行操控能力的增强,为连接扩展成更大的多原子纠缠态、进而开展量子计算研究打下基础。但是,在之前的工作中,由于技术上对单原子比特操控能力仍然不足、光晶格相位漂移较大、缺乏多原子纠缠判定的有效方法,进一步连接纠缠对和测控多原子纠缠态遇到了瓶颈问题。 为了解决上述问题,潘建伟、苑震生团队研发了一种新型的等臂交叉束干涉、自旋依赖超晶格系统,并集成了自主研发的单格点分辨、宽波段消色差的量子气体显微镜和多套用于光斑形状编辑的数字微镜,兼具多原子全局并行和局域单格点测控的能力,且实现了晶格相位长期稳定。在此基础上,该团队取得了填充率为99.2%的原子二维阵列的制备及原位观测,选择其中49对原子制备了纠缠贝尔态,平均保真度为95.6%,寿命为2.2秒;进一步,他们使用纠缠门将相邻纠缠对连接起来,制备了10原子一维纠缠链和8原子二维纠缠块,首次突破了光晶格中原子纠缠对连接和多原子纠缠判定的瓶颈,为开展更大规模的光晶格量子计算和模拟打下基础。   中国科学技术大学博士后章维勇、博士生何明根和博士后孙辉为论文的共同第一作者。该研究工作得到国家自然科学基金委、科技部、安徽省等的支持。   论文链接:https://doi.org/10.1103/PhysRevLett.131.073401   Physics报道:https://physics.aps.org/articles/v16/s122

    发布时间: 2023-10-12

  • 实现接近量子极限的光学时间传递
    于杰平
     2023年6月21日,美国国家标准与技术研究院(NIST)的研究团队发展了时间可编程光频梳技术,将接收功率的最小值从数纳瓦特降低到了仅为数百飞瓦特,接收功率接近量子极限。研究团队展示了在创纪录的300公里自由空间距离和创纪录的102dB链路损耗下,以仅4.0毫瓦的输出功率实现了阿秒级时间传输,远远优于分布式相干传感、秒重新定义以及基础物理学检验所要求的水平。该成果验证了在高损耗星地链路中实现大规模自由空间时间频率传递网络的可能性。相关论文于发表在《自然》杂志上。 论文链接: https://www.nature.com/articles/s41586-023-06032-5 报道链接: https://phys.org/news/2023-06-team-lays-groundwork-future-ultra-precise.html

    发布时间: 2023-10-12

  • 实现迄今最高精度的电子电偶极矩测量
    于杰平
    2023年7月6日,美国实验天体物理联合研究所(JILA)的研究团队将电子电偶极矩(eEDM)上界值压缩到4.1×10-30e·cm,比之前的最好结果提升了2.4倍。这项新的测量意味着,如果将电子的大小比作地球,那么它形状中的任何不对称性都必须小于一个原子的尺度。该成果使得人们能够搜寻新粒子,所覆盖的质量范围可达到比目前大型粒子对撞机所能实现的能量还要高十倍,并可能有助于解释宇宙中正反物质的非对称性。该成果发表在《科学》杂志上。 为了评估电子的形状,研究团队观察了电子在电场中的旋转情况。如果电子不是球形而是稍微偏向一侧(有电偶极矩,eEDM),电场将对其施加扭矩,就像重力使一个竖立的鸡蛋倾倒一样。与原子相比,使用分子可以提高对eEDM的测量精度。为了观察到这种扭矩,研究团队观察了铪氟化物分子(HfF+)的带电能级变化,对电子施加的扭矩将导致分子在相对于电场方向不同的取向下有不同的能级。他们探测了电子的磁矩与分子内电场同向与反向两种构型之间的能级位移,从而得到了eEDM大小的上界为4.1×10-30e·cm。   这一结果使得研究团队能够搜索质量高达40TeV的未发现粒子,这是欧洲核子研究组织(CERN)的大型强子对撞机可观测能量的10倍。目前,新的结果没有发现任何隐藏的粒子的痕迹,这仍然没有解开物质为何比反物质更多的谜团。芝加哥大学的物理学家David DeMille表示,“我们仍然面临着关于宇宙中存在着什么奥秘的问题。” 论文链接: https://www.science.org/doi/10.1126/science.adg4084 报道链接: https://www.sciencenews.org/article/electron-round-new-measurement-matter-physics

    发布时间: 2023-10-12

  • 中国科大探索万有引力对粒子自旋的作用
    于杰平
     2023年5月15日,中国科学技术大学盛东教授与卢征天教授的联合课题组利用高精度氙同位素共磁力仪寻找中子自旋与万有引力的耦合效应,实验发现中子在自旋朝上与朝下之间的重量差别小于十万亿亿分之二(<2×10-21),结果将该效应的耦合强度设定了新的上限。        论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.201401   《物理》杂志报道链接:https://physics.aps.org/articles/v16/80

    发布时间: 2023-10-12

  • 中国科大实现超越海森堡极限精度的量子精密测量
    于杰平
     2023年5月1日,中国科大郭光灿院士团队在量子精密测量的研究中取得重要进展。该团队李传锋、陈耕等人与香港大学同行合作,利用量子不确定因果序实现了超越海森堡极限精度的量子精密测量。     量子精密测量致力于把量子力学原理运用到各种测量任务中以实现超过经典极限的测量精度。海森堡极限被认为是利用量子方法和资源所能达到的最终极限。之前国际上曾有一些工作声称超越了海森堡极限,然而这些工作利用了非线性效应或者包含了含时的哈密顿量,引起了广泛讨论,最终被理论上证明在以能量等作为规范化资源定义的前提下仍然会遵循海森堡极限。  论文链接:https://www.nature.com/articles/s41567-023-02046-y

    发布时间: 2023-10-12

  • 中国科大大幅增强单个碳化硅自旋色心的荧光亮度
    于杰平
     2023年5月8日,中国科大郭光灿院士团队在单个碳化硅自旋色心荧光增强的研究中取得新进展。该团队李传锋、许金时等人成功利用表面等离激元大幅增强了单个碳化硅双空位PL6色心的荧光亮度,并利用共面波导的特性大幅提高了自旋操控效率。这项技术成本低、无需复杂的微纳加工工艺,且不影响色心的相干性质,对于发展基于碳化硅自旋色心的量子应用具有重要意义。   论文链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.3c00568

    发布时间: 2023-10-12

  • 中国科大实现“九章三号”光量子计算原型机
    于杰平
     中国科学技术大学中国科学院量子信息与量子科技创新研究院潘建伟、陆朝阳、刘乃乐等组成的研究团队与中国科学院上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录。科研人员设计了时空解复用的光子探测新方法,构建了高保真度的准光子数可分辨探测器,提升了光子操纵水平和量子计算复杂度。根据公开正式发表的最优经典精确采样算法,“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍。“九章三号”在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机“前沿”(Frontier)花费超过二百亿年的时间。这一成果进一步巩固了我国在光量子计算领域的国际领先地位。  量子计算是后摩尔时代的一种新的计算范式,它在原理上具有超快的并行计算能力,可望通过特定量子算法在一些具有重大社会和经济价值的问题方面相比经典计算机实现指数级别的加速。因而,研制量子计算机是当前世界科技前沿的最大挑战之一。   为此,国际学术界制定了三步走的发展路线。其中,第一步是实现“量子计算优越性”,即通过对近百个量子比特的高精度量子调控,对特定问题的求解展现超级计算机无法比拟的算力,这标志着40年前 Feynman等人的梦想成为现实。“量子计算优越性”实验还可用于检验计算科学的“扩展的丘奇—图灵论题”。同时,在此过程中,发展出可扩展的量子调控技术,为具备容错能力的通用量子计算机的研制提供技术基础。   2019年,美国谷歌和加州大学发布了53比特“悬铃木”超导量子计算处理器,宣称用200秒求解的随机线路采样问题需要超级计算机一万年时间求解。然而,这一宣称随后受到了中国科学家的挑战,改进后的经典算法使得超算上的计算时间从一万年缩短到数十秒,快于“悬铃木”量子处理器。   2020年,中国科大团队成功构建76光子的“九章”光量子计算原型机[Science 370, 1460 (2020)],首次在国际上实现光学体系的“量子计算优越性”,并克服了谷歌实验中量子优越性依赖于样本数量的漏洞。2021年,中国科大团队进一步成功研制了113光子的可相位编程的“九章二号”[PRL 127, 180502 (2021)]和56比特的“祖冲之二号”量子计算原型机[PRL 127, 180501 (2021)],使我国成为唯一在光学和超导两种技术路线都达到了“量子计算优越性”的国家。   在这个“量子计算优越性”战略高地,国际竞争呈现出白热化。位于加拿大多伦多的Xanadu公司与美国国家标准与技术研究院合作,采用与“九章”光量子计算原型机相同的高斯玻色取样路线,在2022年发布了216光子的“北极光”量子处理器,在国际上第二个实现了光学体系“量子计算优越性”。 中国科大团队在理论上首次发展了包含光子全同性的新理论模型,实现了更精确的理论与实验的吻合;同时,发展了完备的贝叶斯验证和关联函数验证,全面排除了所有已知的经典仿冒算法,为量子计算优越性提供了进一步数据支撑。在技术上,研制了基于光纤时间延迟环的超导纳米线探测器,把多光子态分束到不同空间模式并通过延时把空间转化为时间,实现了准光子数可分辨的探测系统。这一系列创新使得研究团队首次实现了对255个光子的操纵能力,极大地提升了光量子计算的复杂度,处理高斯玻色取样的速度比“九章二号”提升了一百万倍。在激烈的国际竞争角逐中,“九章三号”的实现进一步巩固了我国在光量子计算领域的国际领先地位。   进一步,在构建“九章”系列光量子计算原型机的基础上,中国科大研究团队揭示了高斯玻色取样和图论之间的数学联系,完成对稠密子图和Max-Haf两类具有实用价值的图论问题的求解,相比经典计算机精确模拟的速度快1.8亿倍[PRL 130, 190601 (2023)]。此外,又在国际上首次演示了无条件的多光子量子精密测量优势[PRL 130, 070801(2023)]。 量子计算优越性的研究是一个复杂而富有挑战性的工作,量子计算硬件与经典算法之间存在着长期竞争。研究人员期待这项工作一方面能够激发更多关于经典算法模拟的研究工作,另一方面有助于逐步解决量子计算研究中的各种科学和工程挑战。   上述项目受到了安徽省、上海市、科技部、中国科学院和基金委的支持。   论文链接:https://journals.aps.org/prl/issues/131/15       Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage

    发布时间: 2023-10-12

  • 中国科大展示复杂系统随机建模的信息存储量子优势
    于杰平
         2023年5月6日,中国科大郭光灿院士团队与曼彻斯特大学、南洋理工大学合作,利用量子技术在复杂系统随机建模中的信息存储方面取得重要进展。该团队李传锋教授和项国勇教授与合作者使用单个量子比特的内存实现的量子模型可以获得比相同内存维度的任何经典模型更高的精度。该研究成功展示了量子技术在复杂系统非马尔科夫过程建模中的存储优势。      https://www.nature.com/articles/s41467-023-37555-0

    发布时间: 2023-10-12

相关报告