《利用量子纠缠实现光学跃迁的量子增强传感》

  • 来源专题:量子信息科技
  • 编译者: 于杰平
  • 发布时间:2023-10-12
  • 奥地利因斯布鲁克大学的研究团队利用有限范围相互作用产生的原子纠缠,显著提高了原子的光学跃迁测量精度,展示了量子增强传感器中的优势。对原子系统中量子态的控制已经实现了迄今为止最精确的光学原子钟。然而,它们的灵敏度目前受到标准量子极限的限制,这是量子力学为非关联粒子设定的基本下限。但是,当与纠缠粒子一起操作时,可以克服这一限制。该研究代表了将纠缠整合到大量粒子运行的原子光钟中的关键一步,并有望用于更好地保护束缚光学量子比特。该成果于8月30日发表在《自然》杂志上。

     量子系统的观测总是受到一定的统计不确定性的影响。“这是由量子世界的本质造成的,”论文的第一作者Johannes Franke解释道,“纠缠可以帮助我们减少这些错误。”研究人员使用激光来调整排列在真空腔中的离子的相互作用并使其纠缠。他们在实验室中测试了纠缠粒子系综的测量精度。

      因斯布鲁克大学理论物理系的Raphael Kaubrügger解释道:“近邻粒子之间的相互作用随着粒子之间距离的增加而减弱。因此,我们利用自旋交换相互作用来让系统表现得更具相干性。”实验产生的一维链中的所有51个粒子都相互纠缠在一起,并形成了所谓的自旋压缩量子态。

     利用这一点,研究人员在Ramsey型干涉仪中证明了该量子态的计量优势。通过将51个离子纠缠在一起,测量误差相比于无关联粒子情形可以大致减半,低于标准量子极限3.2 ± 0.5 dB。此前,纠缠增强传感则主要依赖于无限长程相互作用,限制了其仅适用于某些量子平台。

      通过他们的实验,研究团队能够证明量子纠缠使传感器更加灵敏。这项技术可以改善目前使用原子钟的领域,例如卫星导航或数据传输。 此外,这些先进的时钟可以为寻找暗物质或确定基本常数随时间变化等研究开辟新的可能性。

    论文链接:

    https://www.nature.com/articles/s41586-023-06472-z

    https://www.nature.com/articles/s41586-023-06360-6

    报道链接:

    https://phys.org/news/2023-08-quantum-entanglement-accuracy-advanced-sensors.html

相关报告
  • 《美国天体物理联合实验室(JILA)等机构研究人员开发新型光学原子钟,利用量子纠缠的原理来提高时间测量的精度》

    • 编译者:李晓萌
    • 发布时间:2024-11-11
    • 近日,美国国家标准与技术研究院(NIST)和科罗拉多大学博尔德分校的联合研究所JILA的研究人员Fellow、NIST物理学家/科罗拉多大学博尔德分校物理学教授Adam Kaufman及其团队已经涉足原子和电子的微小领域。他们的研究涉及使用锶原子晶格创建一个先进的光学原子钟,通过量子纠缠增强,量子纠缠是一种将粒子命运联系在一起的现象。这个雄心勃勃的项目可能会彻底改变计时,有可能超越精度的“标准量子极限”。 该团队与JILA和NIST研究员Jun Ye合作,10月9日在《Nature》期刊(DOI: 10.1038/s41586-024-07913-z)上强调了他们的发现,展示了他们的时钟在某些条件下如何超过传统的精度基准。他们的工作推进了计时,并为新的量子技术打开了大门,例如精确的环境传感器。 这些时钟通过冷却和捕获原子并使用激光诱导能量跃迁,以极高的精度测量时间。然而,原子行为固有的不可预测性带来了局限性。量子纠缠提供了一种解决方案,使纠缠原子作为一个集体更可预测地发挥作用。
  • 《实现片上集成的纠缠量子光源》

    • 来源专题:量子信息科技
    • 编译者:于杰平
    • 发布时间:2023-04-25
    • 2023年4月17日,德国汉诺威莱布尼兹大学、荷兰特文特大学和创业公司QuiX Quantum的国际研究团队首次提出并演示了一个完全集成在芯片上的纠缠量子光源。在量子网络中,量子光源用于产生光量子比特。集成光子学已成为一个重要的平台,用于实现和处理紧凑、可扩展的芯片形式的光学纠缠量子态,并应用于远距离量子安全通信、量子信息处理和量子精密测量。迄今为止开发的量子光源都依赖于外部笨重的激光器,实现完全集成的纠缠量子光源可以使量子信息处理的所有阶段都集成在一个芯片上。实用量子光源系统的制造主要面临的技术难点是如何将一个稳定、可调谐的滤波激光器与一个非线性参量纠缠光子源结合起来。该研究团队通过整合激光腔、一个利用游标效应(Vernier effect)的高效可调谐噪声抑制滤波器(>55dB),以及通过自发四波混频产生纠缠光子对的非线性微镜,实现了完全集成的量子光源。这项工作的关键是采用了将磷化铟激光器、一个过滤器和氮化硅谐振腔体集成到一块芯片上的“研究团队实现了电信波段上四个谐振模式上的成对发射(带宽约1 THz),其效率和量子态质量均有望应用于量子计算或量子互联网中。 论文链接: https://www.nature.com/articles/s41566-023-01193-1 报道链接: https://phys.org/news/2023-04-quantum-source-fully-on-chip-scalability.html