《Cell | 脑损伤后的先天免疫记忆驱动炎症性心脏功能障碍》

  • 编译者: 李康音
  • 发布时间:2024-07-30
  • 2024年7月22日,慕尼黑大学Arthur Liesz实验室在Cell杂志在线发表了题为Innate immune memory after brain injury drives inflammatory cardiac dysfunction的研究文章,揭示了缺血性卒中后的固有免疫记忆驱动炎症性心功能障碍。

    该研究运用了单细胞转录基因组及ATAC测序技术首次揭示了缺血性卒中后外周固有免疫系统在慢性期会发生炎性重构,其主要与骨髓造血干细胞在卒中后形成的“固有免疫记忆”有关,主要表现为与髓系再生相关的表观遗传调控改变以及显著增强的髓系造血反应。随着促炎单核细胞的不断产生以及向周围器官的浸润,包括心脏在内的周围器官的免疫微环境被长期改变。

    该研究同时运用在体及离体实验在缺血性卒中小鼠模型中证实了发生此类急性脑损伤后心脏会发生一系列不可逆的病理改变,包括舒张性心功能不全,心脏传导功能障碍,以及心脏的纤维化改变等。通过骨髓移植实验以及单细胞转录基因组测序实验研究人员证实了以上心脏病变主要是由卒中后重构的骨髓造血干细胞产生的促炎单核细胞介导产生,主要机制包括这些单核细胞向心脏浸润并分化为驻留型巨噬细胞,产生超量的金属基质蛋白酶-9以及激活成纤维细胞等。

    同时,研究人员利用重组白介素-1β (IL-1β) 以及其特异性抗体证实了卒中后骨髓固有免疫记忆主要由IL-1β刺激产生。最后,使用抗IL-1β抗体阻止骨髓固有免疫记忆的建立或使用CCR2/CCR5特异性抑制剂减少卒中后单核细胞向心脏的浸润都可成功预防卒中慢性期内心功能障碍的发生。

相关报告
  • 《Cell | 神经内源PNMA2编码病毒样衣壳诱导自身免疫和神经障碍》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-02-03
    • 2024年1月31日,犹他大学Jason D. Shepherd团队在Cell发表题为PNMA2 forms immunogenic non-enveloped virus-like capsids associated with paraneoplastic neurological syndrome的文章。 该研究揭示了PNMA2蛋白能够自组装成非包膜病毒样衣壳(capsid),并作为免疫原性物质被释放到细胞外。这些壳体具有高度的免疫原性,能够在没有佐剂的情况下诱导小鼠产生自身抗体,并且促进树突状细胞的成熟。此外,注射了PNMA2衣壳的小鼠出现了学习和记忆缺陷,这与抗Ma2的副肿瘤神经综合征(anti-Ma2 paraneoplastic disease)患者的症状相似。 首先,PNMA2的进化历程表明其与逆转座子有着密切的联系。通过系统发育分析,作者得知PNMA2基因在所有主要胎盘哺乳动物谱系中的同源基因组位置是保守的,并在约1亿年前由胎盘哺乳动物的共同祖先所共化。这一发现暗示了PNMA2可能保留了逆转座子的某些生物学特性。即PNMA2是一种源自于胎盘哺乳动物祖先中Ty3/mdg4逆转座子共用的基因。其次,PNMA2在哺乳动物神经元中的表达得到了证实。通过对人类大脑组织样本的大规模RNA测序数据分析,作者发现PNMA2主要在人类脑组织中高表达,并且在单细胞RNA测序数据中也观察到其在兴奋性和抑制性神经元中的表达。 进一步的研究显示,PNMA2蛋白能够自发地形成有序的病毒样衣壳,这些衣壳是由12个五聚体和60个单独的PNMA2分子构成的二十面体结构。这种结构与已知的逆转录病毒和逆转座子壳体非常相似,但PNMA2衣壳的大小要小得多,且不含有核糖核酸结合位点。PNMA2衣壳的释放机制不同于传统病毒,它们以非包膜形式从细胞中释放出来。这种独特的分泌途径可能是通过非经典的自噬或溶酶体途径实现的。PNMA2衣壳的高免疫原性表现在它们能够诱导小鼠产生针对壳体的自身抗体,即使在没有佐剂的情况下也能引发强烈的免疫反应。相反,那些无法形成壳体的突变型PNMA2蛋白则不能引起自身抗体的产生。 此外,PNMA2衣壳还能够促进树突状细胞的成熟,这有助于启动适应性免疫应答。树突状细胞是免疫系统中关键的抗原呈递细胞,它们的激活对于T细胞活化至关重要,而T细胞又能够激活B细胞,从而产生大量的抗体。最后,注射了PNMA2衣壳的小鼠表现出学习障碍和记忆缺陷,这与抗Ma2副肿瘤神经综合征患者所经历的神经系统症状相类似。然而,这些小鼠并未出现明显的脑部炎症或病理改变,这表明PNMA2衣壳引发的免疫反应可能与人类疾病中的神经损伤机制不同。 综上所述,PNMA2衣壳的发现不仅为理解PNMA2在哺乳动物中枢神经系统中的作用提供了新的视角,而且也揭示了这类衣壳在触发自身免疫反应和导致神经功能障碍方面的重要性。这些发现对于开发针对PNMA2相关疾病的治疗策略具有重要意义。
  • 《Nature | GSDMD介导炎症性血脑屏障破坏》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-21
    • 2024年4月17日,北京生命科学研究所邵峰院士、北京脑科学与类脑研究所罗敏敏共同通讯在Nature发表题为Brain endothelial GSDMD activation mediates inflammatory BBB breakdown的文章,发现成孔蛋白GSDMD介导了炎症性血脑屏障破坏。 血脑屏障(BBB)是一种高度选择性的屏障,可保护中枢神经系统(CNS)免受感染和有害物质的影响。然而,在感染和炎症条件下,血脑屏障破坏的机制仍然难以捉摸。 该研究首先表明,LPS诱导的血脑屏障破坏需要胞质脂多糖(LPS)传感器caspase-11的激活,而不是TLR4诱导的细胞因子的激活。缺乏LPS转移和内化途径蛋白LBP和CD14的小鼠也能抵抗血脑屏障破坏,这表明循环LPS的内化对这一过程是必要的。然后,单细胞RNA测序分析显示,表达高水平GSDMD的脑内皮细胞(bEC)是中枢神经系统中对循环LPS反应最显著的细胞。LPS引发bEC中caspase-11和CD14的表达,导致体外和体内GSDMD介导的质膜穿孔和焦亡。 电子显微镜研究提供了对伴随血脑屏障破坏的超微结构变化的进一步见解。在LPS刺激的野生型小鼠中,研究人员观察到热解性bEC、异常紧密连接以及血管系统从基底膜分离。而Gsdmd缺陷小鼠没有这些变化,这表明bEC中Gsdmd的激活是观察到的血脑屏障破坏的潜在机制。为了直接测试bEC特异性GSDMD的作用,研究人员利用bEC cre小鼠模型选择性敲除了bEC中的GSDMD。这些bEC特异性Gsdmd敲除小鼠免受LPS诱导的血脑屏障破坏,证明了Gsdmd激活在bEC中的关键作用。 此外,研究人员证明,绕过LPS刺激,将活性GSDMD直接递送到bEC中也足以打开血脑屏障。此外,在人caspase-4人源化的小鼠模型中,对bEC的GSDMD中和nanobody的表达阻断了革兰氏阴性菌Klebsiella pneumoniae诱导的血脑屏障破坏,其功能等同于小鼠caspase-11。这些发现概述了炎症性血脑屏障破裂的新机制:bEC中GSDMD的激活起着核心作用。该研究还提出了与血脑屏障损伤相关的中枢神经系统疾病的潜在治疗策略。通过靶向bEC中的caspase-11/GSDMD轴,可能预防或减轻革兰氏阴性细菌感染或其他炎症条件下血脑屏障的破坏。 这项工作的影响超出了血脑屏障。众所周知,GSDMD被各种炎症刺激激活,并可在多种细胞类型中诱导焦亡。该研究证明,在bEC中,GSDMD介导的膜穿孔足以破坏血脑屏障,这突出了在不同细胞类型和组织的背景下理解GSDMD激活的重要性。这一知识可能在炎症和细胞死亡生物学领域有更广泛的应用。 总的来说,这项研究为炎症性血脑屏障破坏的机制提供了重要的见解,并为开发靶向疗法开辟了新的途径,以保护中枢神经系统免受血脑屏障损伤的有害影响。通过阐明caspase-11/GSDMD轴在bEC中的中心作用,研究人员发现了一个有希望的干预靶点,可能可以在感染和炎症损伤期间保持血脑屏障的完整性。