《JMC:合成抗生素治疗耐药性细菌感染展现潜力》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-03-26
  • 根据最近一项研究,一种新型的人工抗生素能够成功地抵抗超级细菌的感染,这是三十年来在抗生素领域的最重要的突破之一。

    这项突破对于开发新型的泰斯巴汀(teixobactin,一种2015年被美国科学家们发现于土壤样本中的新型抗生素,可以用于治疗耐药性金黄色葡球菌以及耐药性场球菌)类似药物也具有重要的意义。

    来自英国林肯大学的研究者们发现一类与太巴斯汀相似的合成类药物,能够治疗小鼠的细菌感染。这一发现表明这种新型的化合物可以作为新型抗生素的模板进行开发。

    通过将抗生素结构的关键部位的氨基酸进行置换,研究者们使得泰巴斯汀的制备工艺变得更加简单,此外,这种简化版本的泰巴斯汀同样具有极强的体外杀伤耐药性细菌的能力。之后,来自新加坡眼科研究所的研究者们检测了该化合物对小鼠感染的治疗效果。

    结果显示,这种药物不仅能够消除感染,而且能够将感染负面症状降到最低,这一效果远远优于临床上常用的抗生素莫西沙星。相关结果发表在最近一期的《Journal of Medicinal Chemistry》杂志上。

    根据估计,到2050年每年将会有1000万人受到耐药性细菌感染,因此开发新型的抗生素显得尤为重要。

    对此,来自林肯大学的新药研发专家Ishwar Singh称:"将这种简化版本的泰巴斯汀又能够与开发抗感染的新型抗生素,有助于进一步提高泰巴斯汀的治疗效果"。

  • 原文来源:https://pubs.acs.org/doi/10.1021/acs.jmedchem.7b01634
相关报告
  • 《研究人员设计出能够破坏细菌对常见抗生素产生耐药性机制的分子》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2017-11-13
    • 在一项新的研究中,来自西班牙和德国的研究人员在抵抗超级细菌和它们的多药耐药性中取得了重大突破。他们设计出能够破坏细菌对常见抗生素产生耐药性机制的分子。相关研究结果于2017年11月2日在线发表在Cell期刊上,论文标题为“Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance”。 超级细菌是对几种抗生素类型产生耐药性的细菌菌株。它们的主要特征是它们的DNA发生突变的能力可代代相传,从而让它们自己对最为常见的抗生素产生耐药性。其他的因素能够让这种情况恶化,包括不谨慎和不加选择地使用抗生素,主要是因为没有完成完整的治疗期和开展不必要的自我治疗。 这项研究是在小鼠和金黄色葡萄球菌(Staphylococcus aureus)中开展的。考虑到金黄色葡萄球菌对甲氧西林产生耐药性(特别是医院环境中),它是最为威胁的菌株之一。根据世界卫生组织(WHO)的统计,耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus, MRSA)感染者死亡的可能性要比非耐药性菌株感染者增加了64%。这种研究的重点是直接攻击这些细菌的细胞膜上的被称作脂筏(lipid raft)的微结构域。
  • 《解决细菌耐药性新尝试:免疫+抗生素组合拳》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-11
    • 利用人体免疫力已被证明是治疗癌症的有效方法,美国宾州Lehigh大学的科学家们正在用同样的思路来辅助现有抗生素治疗耐药菌。 目前,世界上有数百万人被耐药性极强的超级细菌(superbugs)所感染,每年约70万人死于耐药性感染。抗生素耐药问题日益突出,人们急需研发新型抗生素来抵抗超级细菌的入侵。其中作为引起人类感染性疾病的主要病原之一,革兰氏阴性菌对临床常用抗生素有很强的耐药性,是当前最受关注的耐药菌。 Lehigh大学生物化学副教授Marcos Pires博士领导的团队将抗原表位(可被自身免疫系统识别)与多粘菌素B(polymyxinB,一种colistin)连接起来,创建了他们称之为“细菌免疫治疗”或“免疫抗生素”的新型组合产物去抵御耐药菌。其中“多粘菌素B”可与革兰氏阴性菌表面的脂类A特异性结合,而“抗原表位”可以引发免疫反应。试验结果显示,该产物可以在人体血清内杀死大量的大肠杆菌,同时可以在活体宿主中结合在革兰氏阴性菌的表面上。这一结果于近期发表在《Journal Cell Chemical Biology》上。此外,他们还与Lehigh大学Wonpil Im教授的团队合作,通过计算生物物理学的方法研究抗生素与细菌膜的相互作用,建设了一个阐明免疫反应发生后细胞表面变化的模型。 Pires教授团队过去曾经将人体可识别的抗原与D-氨基酸接合在一起。革兰氏阳性菌合成外膜时会使用这些改装过的、连接抗原的D-氨基酸,进而可以引发人体的免疫反应。但对于大肠杆菌和绿脓杆菌这些革兰氏阴性菌来说就没那么容易了。革兰氏阴性菌的细胞膜有一层额外保护,使得他们难以被杀死,同时这些细菌也在不停进化,造成抗生素失效,让抵抗这类细菌变得愈加困难。 例如,在2016年的全球抗生素危机中,美国发现了第一种具有MCR-1基因的大肠杆菌感染,这种基因使得大肠杆菌对colistin产生抗性,这一最后抗生素防线失效。 很多科学家都在研究如何对抗革兰氏阴性菌的自我保护,例如一个基因泰克(Genentech)团队也在通过免疫学的思路来解决这一问题。他们设计了一种单克隆抗体可以特异性地与BamA(β-barrel assembly machine,β-桶蛋白组合酶)结合。BamA可以帮助革兰氏阴性菌细胞膜β桶蛋白(β-barrel proteins)的折叠和嵌入整合。拮抗BamA则可以抑制细胞膜β桶蛋白的折叠,导致周质应激压力,破坏外膜完整性,进而杀死细菌。基因泰克的研究结果于近期发表在《PNAS》上。 Pires博士表示:“试验结果说明这一合成产物可以在杀死细菌的同时引发免疫反应,利用这样的组合拳击毙难以杀死的细菌,我们相信这样的方法很有潜力,值得进一步开展体内研究。” 接下来,Pires博士的团队计划在复杂动物中进行体内研究,他们也在考虑类似基因泰克团队的方法,即不但利用人体自由的免疫反应,同时要加入互补的外源单克隆抗体以获得更好的效果。