《两篇Protein & Cell报道我国科学家进一步优化腺嘌呤碱基编辑系统》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-08-02
  • 在两项新的研究中,来自中国华东师范大学和中山大学的两个研究小组在小鼠和大鼠品系中开发出一种被称作腺嘌呤碱基编辑器(adenine base editor, ABE)的碱基编辑系统,并对这种系统加以改进,这将对人类遗传疾病和基因疗法带来重大的影响。相关研究结果发表在开放存取的Protein & Cell期刊上,论文标题分别为“Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants”和“Effective and precise adenine base editing in mouse zygotes”。

    人基因由碱基A、T、C和G组成,这些碱基以特定的顺序排列在一起来编码遗传信息。这种ABE系统能够产生所需的A→G转化,因而允许科学家们改变遗传密码,同时让不想要的结果最小化。鉴于几乎一半的人类遗传疾病是由C/G→T/C突变引起的,这最好是通过ABE系统加以校正,因此它是一种有前景的治疗应用技术。

    小鼠和大鼠是生物学和医学研究中最为重要的两种模式生物,这是因为它们很容易繁殖并且在生理上与人类相似。利用经过基因修饰的啮齿类动物模型,科学家们在理解人类生物学、疾病病理学和开发治疗多种疾病的治疗方法方面取得了重大进展。然而,即使使用像CRISPR/Cas9这样的靶向基因组编辑技术,也不容易培育出含有在人类疾病中鉴定处的点突变的小鼠或大鼠品系。

    在这两项新的研究中,这些研究人员利用这种ABE系统高效地培育出三种小鼠品系来模拟一种被称作杜氏肌营养不良(Dunchenne Muscular Dystrophy, DMD)的遗传性肌肉变性疾病。他们还使用一种大鼠模型来模拟II型遗传性糖原贮积病。这些模型可能是测试创新疗法(特别是基因疗法)的重要资源。

    华东师范大学生命科学学院生命医学系主任李大力(Dali Li)说,“扩大ABE系统的靶向范围并测试它在细胞和动物中的编辑效率和编辑窗口是至关重要的。”

    李大力主任及其在华东师范大学领导的研究小组已能够靶向原始的ABE系统不能够靶向的基因组位点。他们使用化学修饰的“向导RNA(gRNA)”来提高整体编辑效率。

    李大力主任说,“早期的研究结果是很有希望的。我们正在努力将这种强大的工具应用于临床前治疗研究中,旨在为不同的人类遗传疾病开发出新的基因治疗策略。我相信尽管改进ABE系统的整体编辑效率和运送系统充满挑战,但是它的临床应用将会在不久的将来到来。”

  • 原文来源:http://news.bioon.com/article/6725432.html
相关报告
  • 《科学家发表新型基因编辑系统Prime Editing工作原理专评》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-12-23
    • 12月13日,中国科学院-马普计算生物学伙伴研究所研究员杨力与上海科技大学免疫化学研究所副研究员杨贝和生命科学与技术学院教授陈佳,应邀在国际学术期刊《细胞》(Cell)上发表题为One Prime for All Editing 的专评论文(Preview),全面地对哈佛大学教授David R.Liu近期在Nature 杂志发表的Search-and-replace genome editing without double-strand breaks or donor DNA 研究进行推介,详细解读了新型基因编辑系统Prime Editing的工作原理,并展望了该领域未来的发展方向。 在该专评论文中,杨力等对Prime Editing系统的设计原理及构建过程进行了介绍(图1)。新型Prime Editing系统通过将Cas9切刻酶与逆转录酶融合表达,并利用prime editing guide RNA(pegRNA)最终实现靶位点的基因编辑。其中,pegRNA由3个部分组成,包括single-guide RNA(sgRNA)、引物结合位点(Prime Binding Site,PBS)和储存有靶向位点编辑信息的反转录模板(RT templet with edit,图1A)。Prime Editor(PE)在创建过程中经历了3步关键改进。PE1利用Cas9切刻酶(H840A)和Moloney Murine Leukemia Virus(M-MLV)逆转录酶构成,虽可以精确实现设计的基因组编辑,但在哺乳动物细胞上的编辑效率较低。因此,研究人员构建了PE2,主要是通过在M-MLV逆转录酶中引入5个氨基酸改变进而提高靶向位点的编辑效率。最后,研究人员构建了PE3/PE3b,通过共表达介导非靶向DNA单链切刻(nick)的sgRNA,利用细胞内源性错配修复(mismatchrepair)途径保护编辑链的修饰信息,从而进一步提高了primeediting的效率(图1B)。Primeediting具有非常广泛的应用前景,可以实现包括12种碱基替换、小片段碱基插入和缺失等的不同编辑用途(图1C),毋庸置疑地将在基础和临床研究领域获得广泛地应用。在这一专评论文中,杨力等也指出了Prime Editing系统及其应用仍有亟待改进之处:如gRNA依赖性或非依赖性的脱靶效应尚且未知、PE3介导的高碱基插入/缺失率以及Prime Editing系统在成体动物中的递送等问题。 杨力长期从事核酸系统生物学及相关新技术拓展研究,近期通过大数据整合分析揭示了DNA/RNA碱基编辑及相关分子机制(Nat Struct Mol Biol 2018; Mol Cell 2018),利用核酸编辑酶创建多种高效基因组碱基编辑新体系(Cell Res 2017; Nat Biotechnol 2018a; Nat Biotechnol 2018b),并构建了可利用20种已报道碱基编辑器进行编辑的人类疾病相关单碱基突变位点的数据库(BEable-GPS, Genome Biol 2019)。
  • 《我国科学家利用CRISPR基因编辑技术修正癌变基因》

    • 来源专题:中国科学院文献情报生命健康领域集成服务门户
    • 编译者:李丹丹
    • 发布时间:2020-03-21
    • 2020年2月17日,浙江大学转化医学研究院吕志民团队联合中国科学院生物物理研究所李新建团队在Nature Cell Biology在线发表了题为“Programmable base editing of mutated TERT promoter inhibits brain tumour growth ”的研究论文。该研究使用腺相关病毒(Adeno-associated virus, AAV)作为载体表达拥有腺嘌呤脱氨酶活性的空肠弯曲菌(Campylobacter jejuni)Cas9融合蛋白以及对应的单向导RNA(sgRNA),实现精准修正恶性胶质瘤细胞端粒酶基因启动子区域的致癌突变,以抑制肿瘤细胞生长。 该研究使用腺相关病毒作为碱基编辑器CjABE的表达载体,精准修正胶质瘤细胞端粒酶基因启动子区域的致癌突变,从而减少肿瘤细胞中TERT基因的转录和蛋白表达,抑制其分裂,诱导恶性胶质瘤细胞的衰老及凋亡。原位注射表达CjABE的腺相关病毒能够有效抑制小鼠移植瘤的生长并延长荷瘤小鼠的生存时间。该研究开创性地利用基因编辑以修正癌变基因,为癌症治疗提供了崭新的思路和方法,并揭示了端粒酶基因启动子区域突变是肿瘤精准治疗的靶点。a