《武汉物数所等在腔光力系统中能量相干传递研究方面取得进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: liuzh
  • 发布时间:2018-09-07
  •   中国科学院武汉物理与数学研究所研究员曹更玉带领的表面单分子化学物理研究组与中国科学院院士、北京计算科学研究中心讲座教授孙昌璞、研究员李勇和中国科学院理论物理研究所研究员易俗等合作,在微纳腔光力系统中的能量相干传递方面取得了新的研究进展,首次在实验上构造了基于动力学局域振动模式的相干光力开关,实现了耦合机械振子中能量传递速率全范围的连续调控。相关研究结果发表在Physical Review Applied上。

相关报告
  • 《武汉物数所在基于中性原子的量子信息处理基础研究中取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-14
    • 近日,中国科学院武汉物理与数学研究所研究员詹明生领导的团队在基于中性原子的量子信息处理的基础研究中取得新进展。该团队率先利用魔幻光强技术构造高品质的中性原子量子寄存器,并在该新型量子寄存器中实现了保真度高于99.99%的全局单量子比特门。该操控精度超过了公认的容错量子计算所要求的量子门的操控精度的阈值。该实验研究成果近日发表在《物理评论快报》上。   中性原子体系作为量子计算的候选体系之一,与超导、半导体等候选体系相比具有良好的可扩展性、较长的相干时间、可控的原子间相互作用等优势。在此前的实验研究中,国际上众多研究组均采用会对原子产生较大的微分光频移的光偶极阱阵列装载中性原子用于构造量子寄存器。在固有的非均匀展宽的影响下,这些研究组对寄存器中单比特量子全局逻辑门操作的错误率通常在10-3量级,未曾达到量子纠错的容错阈值(1X10-4)。该问题成为基于中性原子搭建实用型量子计算机的三大障碍之一。   在武汉物数所副研究员何晓东和许鹏带领下,博士生盛诚等人在此前该团队创立的单原子魔幻光强偶极阱(MI-ODT)工作(Phys.Rev.Lett. 117, 123201 (2016))的基础上,利用该技术成功实现了一个4x4的新型魔幻光强偶极阱阵列。进而在对该阵列的16个量子比特的逐个单比特逻辑门操控中,实现了平均错误率仅为(4.7±1.1)x10-5的全局单比特量子逻辑门,并且最大与最小操控误差都在10-5的区间内,优于1X10-4。这个结果归功于魔幻光强偶极阱能抑制量子比特共振频率的非均匀展宽,从而极大地提升了阵列中量子比特的相干性以及共振频率的一致性,最终使得微波操控量子比特的精度得到显著提高。   该研究成果是该团队发展的魔幻光强原子囚禁与量子态精密操控技术在高保真全局单量子门的成功应用,突显了该原创技术在中性原子量子计算研究的价值,为下一步构造可扩展的中性原子量子信息处理奠定了基础。   该研究得到科技部重点研发计划、国家自然科学基金委和中国科学院先导专项的资助。
  • 《植物所等在红藻光系统I三维结构解析方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-30
    •         光系统I(Photosystem I,PSI)是执行光合作用光反应的一个重要的超大色素-蛋白复合体。它通过一系列复杂的色素网络捕获太阳能,并通过驱动跨膜电子转移从而将光能转化成化学能,被称作自然界中最高效的光能转化装置。目前,国际上已经解析了原核生物蓝藻PSI以及高等植物豌豆PSI的捕光色素蛋白复合体I(LHCI)高分辨率结构,但关于红藻等从原核生物向真核生物过渡的真核藻类的PSI高分辨率三维结构研究还是一个空白。   中国科学院植物研究所研究员、中国科学院院士匡廷云与研究员沈建仁领导的研究组长期从事光合膜蛋白超大复合体的结构与功能研究。近期,研究组通过与清华大学教授、中国科学院院士隋森芳团队开展合作,利用单颗粒冷冻电镜技术首次解析了红藻PSI核心与捕光天线复合物(PSI-LHCR)的3.63 Å分辨率的三维结构。研究发现,红藻中存在2种PSI-LHCR结构状态,分别结合了5个和3个LHCR;与高等植物全部LHCI位于PSI核心一侧不同的是,结合5个LHCR的红藻PSI-LHCR的两个额外LHCR蛋白位于相反一侧,展现了与高等植物PSI-LHCI明显不同的结构,显示了处于原始形态的红藻PSI-LHCR的特征。研究表明,红藻PSI核心既具备了蓝藻PSI的部分特征,也带有高等植物PSI的部分特征,证实了红藻PSI是从原核生物向真核生物进化的中间类型。研究人员还首次确认了真核PsaO亚基在PSI中的位置和结合色素的情况,并确认了红藻LHCR中独特的色素组成。   该研究不仅揭示了红藻PSI-LHCR的独特结构和能量传递特征,显示了红藻PSI结构对环境变化的适应性,以及PSI从原核生物向真核生物进化过程中的结构变化,对于阐明PSI的进化和功能具有重要意义。这是该研究组继2015年解析了高等植物PSI-LHCI高分辨率三维结构之后的又一重要进展。   该研究成果于4月9日在线发表于国际学术期刊《美国国家科学院院刊》(PNAS)。清华大学博士研究生皮雄和植物所沈建仁研究组博士后田立荣为论文共同第一作者,沈建仁和隋森芳为共同通讯作者,匡廷云参与了该研究的整体设计。该研究得到了科技部国家重点研发计划、国家自然科学基金委、中国科学院先导项目、前沿重点项目和院长基金的共同资助。