渥太华大学、加拿大国家研究委员会(National Reasearch Council of Canada)和伦敦帝国理工学院(Imperial College London)跨国合作团队开发出一种全新的量子激发全息技术,利用激光呈现三位图像——就像《星际迷航》(Star Trek)和《星球大战》(Star Wars)演的那样。通过记录和重建含有单个光粒子的微弱光束,该技术为遥远物体的全息成像打开了大门。
图1 (A)信号和参考准备。(B)干涉仪和探测。SHG,二次谐波生成; SPF,短路滤波器; BPF,带通滤波器; ND,中性灰度滤镜; BBO,β-硼酸钡; PBS; 偏振分束器; B,光束块; APD,雪崩光电二极管; HWP,半波片; H/V,水平/垂直偏振; f,凸透镜; PBD,偏振光束位移器。(C)两个输出光束的典型强度像。一阶干涉是不可见的,因为光束是相位不相关的。一个4f 镜头系统将 SLM 平面成像到相机上
该团队负责人是渥太华大学物理学副教授Benjamin Sussman,他们与美国国家核安全管理局合作,开发了一种先驱性的量子激发全息技术。他们的目标是记录和重建极其微弱的光束,这些光束仅仅由一个单一的光粒子组成,被称为光子。他们的工作有可能彻底改变3D 场景重建,并在不同领域开启大量应用。
他们的工作有可能彻底改变3D 场景重建,并在不同领域开启大量应用。长期以来,精确重建三维场景一直是成像领域的一个目标和困难。从自动驾驶汽车到扩增实境,各种应用都依赖于这一领域的进步。
Sussman教授称:“与传统的全息方法相比,我们团队引进的量子激励全息技术有两个显著的优势。”
“首先,它表现出对全息记录过程中振动等机械不稳定性的显著反射。传统全息术由于易受振动影响而需要较短的曝光时间,与之不同的是,这种新技术使研究人员能够长时间地记录全息图,从而确保更高的精度。其次,我们的新技术可以用来记录自发光或遥远物体的全息图。”
这开辟了许多可能性,为远距离物体的三维成像和描述量子点和单原子单光子发射的空间形状铺平了道路。
Sussman教授说:“该新技术保证了通过量子成像技术的进步和尖端商业相机技术的可用性。通过利用先进的摄像机,每当它们探测到一个光粒子时,就能提供精确的时间和位置标记,我们能够解决记录全息图所必需的相关性。这一突破突显了量子研究与技术发展之间的协同作用。”
传统摄影主要捕捉场景强度,但全息摄影通过结合相位信息,即从场景不同部分收集到的光线之间的相对延迟,使其更进一步更新。
振幅干涉是全息术中的一种重要现象,它是指两个波的振幅(或能量)可以相减,也可以相加。然而,新开发的技术使用不同类型的干扰。渥太华大学理学硕士生 Guillaume Thekkadath 博士、该论文第一作者称:“我们的全息图记录了两个光源强度之间的相互关系。这些相关性甚至可以揭示单个光子中的量子干涉效应。”
这项研究的意义是深远的,从加强现有的全息技术,以全新的应用领域,如天文学,纳米技术和量子计算。全息术的未来无疑是光明的。
量子光和经典光全息术的强度干涉测量研究发表在《科学进展》杂志上。