《前沿 | 基于非线性光学的新型量子传感器》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-03-28
  • 来自University of Tsukuba科学与应用科学学院的科学家们开发了一种利用钻石中天然存在的类原子缺陷来监测温度的方法。他们发现,热量的增加会导致非线性谐波产生光的强度降低。这项工作可能实现高度精确的纳米温度计。

    纳米技术在新设备中扮演着越来越重要的角色,且在小尺度上测量温度的能力变得越来越重要。对于长度尺度小于几百纳米的许多应用来说,传统的温度计通常太大,并不适用。因此,需要新的方法实现微型非接触式温度传感器。

    现在,来自Tsukuba大学和日本高级科学技术研究所的一个研究小组利用钻石中一种特殊缺陷的非线性光学特性,这种缺陷是由排列在钻石立方晶格中的碳原子组成的。氮空位(NV)缺陷是金刚石中两个相邻碳原子被一个氮原子和一个空穴取代而产生的自然缺陷。由于其易获得性和特殊的量子非线性光学性质,引起了人们的广泛关注。其中之一,是将两个甚至三个光子结合成一个高能光子的能力,这个过程被称为谐波产生。

    图1:反射式测量装置实验原理图。其中插图显示了金刚石晶体中氮空位(NV)中心的原子结构

    研究小组利用红外超短脉冲激光激发发现,在20-300°C范围内,谐波的产生随着温度的降低而减少。第一作者Aizitiaili Abulikemu博士说:“这项研究为创建基于钻石的非线性光学温度传感提供了一种高效可行的方法。” 钻石中不同颜色光的速度不匹配,造成了这种温度相关的变化。也就是说,随着原子晶格温度的升高,原始光与谐波产生的高能量光的折射率差增大,从而降低了谐波产生的效率。

    Muneaki haase教授说:“钻石可以被加工成探针的微小尖端,作为纳米级温度传感器的一部分。”基于这种温度传感器,未来应用甚至可能包括一种小到可以在活细胞内找到的温度计,它可以用激光远程被探测到。

相关报告
  • 《前沿 | 激光烧蚀法制备功能性非线性光学纳米颗粒》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-06-01
    • 非线性光学是一个重要的研究方向,在激光制造、纳米结构制造、传感器设计、光电子学、生物光子学和量子光学等领域有着广泛的应用。非线性光学材料是基本的构件,对从科学研究、工业生产到军事等广泛领域都至关重要。经过多年的发展,非线性光学已经成为各种前沿研究和广泛应用的光学系统的支柱,包括激光制造、光学成像、信息处理与通信以及纳米级光刻。这方面的进展可能会推动许多学科的发展。 纳米技术为设计新材料和打破非线性光学的传统限制铺平了道路。纳米颗粒是被广泛研究的最重要的成员之一,具有数千年的悠久历史。纳米颗粒由于其在设计和增强非线性光学特性方面的灵活性而显示出巨大的潜力,它的非线性光学特性优于其块状物。在过去的十年中,基于非线性光学纳米颗粒的光学器件因其性能的提高和多功能性而受到越来越多的关注,其中许多材料还表现出良好的生物相容性,扩大了非线性光学器件的应用范围。 图1,激光烧蚀制备的非线性光学纳米颗粒类型 因此,纳米颗粒被广泛用于非线性光学应用。对于纳米颗粒的合成,如何制备大规模、高重复性、低成本的非线性光学纳米颗粒仍然是一个挑战。为了应对这一挑战,研究人员研究了各种合成方法。化学和激光烧蚀是两种主要的合成方法。化学方法有助于工业化生产纳米颗粒。对于化学方法,也存在一些限制,包括杂质和结块。另一方面,激光烧蚀是一种更直接、更环保、更通用的非线性光学纳米颗粒合成方法。基于非线性光学纳米颗粒的应用提供了极大的灵活性和可能性,以满足不同设备的要求。 新加坡国立大学洪明辉教授的研究小组回顾并综述了与光振幅/强度相关的非线性光学的最新进展。饱和吸收和光限幅是描述材料系统传输变化的两种非线性现象。饱和吸收是光吸收随光强的增大而减小的过程。换句话说,具有饱和吸收的材料在更强的入射光照射下往往更“透明”。具有饱和吸收的材料被广泛用于制造高功率激光器。 另一方面,光限幅描述了相反的效果。当光强度增加时,光限幅材料减少光的传输。因此,光限幅也被表示为反向饱和吸收。它在从防护材料、军事武器、光开关到高功率激光源的应用中也起着至关重要的作用。 尽管它们很重要,但饱和吸收和光限幅通常都需要高强度的入射光。因此,它们主要在使用峰值功率高的脉冲激光器的设备中观察到。这种情况可能导致永久性光学损伤。复杂的设计和高功率激光器的成本也是限制实际应用的关键瓶颈。研究具有优良非线性性能的合适材料是该领域的主要研究方向。这一进展不仅将极大地提升当前光学非线性系统的性能,还将为设计功能器件带来新的机会,以满足对量子光学、先进传感器、人工智能、下一代光学计算机和许多其他前沿课题日益增长的需求。 这篇发表在《Opto-Electronic Science》上的综述总结了这一方向的最新进展,更侧重于以一系列案例研究为基础的方法论。它还涵盖了未来扩展的研究方向,以提供有关其主要优势和成就的更多观点。挑战和未来研究趋势是另一个关注,最新的研究工作带来新的机遇和潜力。总的来说,研究人员综述了激光烧蚀法制备非线性光学纳米颗粒的研究进展,表明激光烧蚀法制备的非线性光学纳米颗粒具有良好的性能和多种功能。激光烧蚀法制备纳米颗粒是一种绿色、高效、通用的物理方法,适用于快速一步合成和潜在的大规模生产。
  • 《前沿 | 纳米级量子传感器实现高清成像》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-06-27
    • 日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。 (a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化 氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。 研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。 当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。 此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。 高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。 原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。