《前沿 | 片上光子探测器显著推进量子技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-11-17
  • 一组研究人员开发了一种片上光子计数设备,可以显著推进量子技术的众多应用。 Llewellyn West Jones,Jr.电气工程,应用物理和物理学教授Hong Tang的实验室首次开发了片上光子数解析(PNR)探测器,一次可以解析多达100个光子。该探测器显示了其在分辨光脉冲的光子统计数据方面的能力。研究结果发表在Nature Photonics上。

    光子数解析(PNR)探测器被认为是测量光的最需要的技术。凭借非常高的灵敏度,即使在极弱的光脉冲中,它们也可以分辨光子的数量。它们对于广泛的量子应用至关重要,包括量子计算、量子密码学和遥感。然而,目前的光子计数设备在一次可以检测到多少光子方面受到限制 - 通常一次只能检测到一个,并且不超过10个。

    “问题是,如果你有多个探测器,探测器就会饱和,所以你无法判断你有多少光子,”共同主要作者Yiyu Zhou说,他是唐实验室的博士后助理。

    不过,Tang Group的设备不仅将PNR能力提高了100,而且计数率提高了三个数量级。它还在易于接近的温度下运行。

    正因为如此,该设备允许更广泛的应用,唐说,“特别是在许多快速出现的量子应用中,如大规模玻色子采样,光子量子计算和量子计量学。

    该设备的复杂性需要多年的设计和制造,然后还要验证其性能。

    为了在他们的工作基础上,研究人员计划使设备更小,并增加它可以检测到的光子数量。这可能包括使用不同的介电材料将其光子数分辨率提高到1000以上。

    此外,他们希望将探测器与片上量子光源集成在一起。传统的探测器被设计为与光纤接口,这可能导致信号丢失。 唐实验室前博士后助理、现任Meta研究科学家程日生说:“如果我们能把所有东西整合在一起,我们的损耗就会更低,测量保真度也会更高。”

相关报告
  • 《前沿 | 新型全息量子光子技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-12
    • 渥太华大学、加拿大国家研究委员会(National Reasearch Council of Canada)和伦敦帝国理工学院(Imperial College London)跨国合作团队开发出一种全新的量子激发全息技术,利用激光呈现三位图像——就像《星际迷航》(Star Trek)和《星球大战》(Star Wars)演的那样。通过记录和重建含有单个光粒子的微弱光束,该技术为遥远物体的全息成像打开了大门。 图1 (A)信号和参考准备。(B)干涉仪和探测。SHG,二次谐波生成; SPF,短路滤波器; BPF,带通滤波器; ND,中性灰度滤镜; BBO,β-硼酸钡; PBS; 偏振分束器; B,光束块; APD,雪崩光电二极管; HWP,半波片; H/V,水平/垂直偏振; f,凸透镜; PBD,偏振光束位移器。(C)两个输出光束的典型强度像。一阶干涉是不可见的,因为光束是相位不相关的。一个4f 镜头系统将 SLM 平面成像到相机上 该团队负责人是渥太华大学物理学副教授Benjamin Sussman,他们与美国国家核安全管理局合作,开发了一种先驱性的量子激发全息技术。他们的目标是记录和重建极其微弱的光束,这些光束仅仅由一个单一的光粒子组成,被称为光子。他们的工作有可能彻底改变3D 场景重建,并在不同领域开启大量应用。 他们的工作有可能彻底改变3D 场景重建,并在不同领域开启大量应用。长期以来,精确重建三维场景一直是成像领域的一个目标和困难。从自动驾驶汽车到扩增实境,各种应用都依赖于这一领域的进步。 Sussman教授称:“与传统的全息方法相比,我们团队引进的量子激励全息技术有两个显著的优势。” “首先,它表现出对全息记录过程中振动等机械不稳定性的显著反射。传统全息术由于易受振动影响而需要较短的曝光时间,与之不同的是,这种新技术使研究人员能够长时间地记录全息图,从而确保更高的精度。其次,我们的新技术可以用来记录自发光或遥远物体的全息图。” 这开辟了许多可能性,为远距离物体的三维成像和描述量子点和单原子单光子发射的空间形状铺平了道路。 Sussman教授说:“该新技术保证了通过量子成像技术的进步和尖端商业相机技术的可用性。通过利用先进的摄像机,每当它们探测到一个光粒子时,就能提供精确的时间和位置标记,我们能够解决记录全息图所必需的相关性。这一突破突显了量子研究与技术发展之间的协同作用。” 传统摄影主要捕捉场景强度,但全息摄影通过结合相位信息,即从场景不同部分收集到的光线之间的相对延迟,使其更进一步更新。 振幅干涉是全息术中的一种重要现象,它是指两个波的振幅(或能量)可以相减,也可以相加。然而,新开发的技术使用不同类型的干扰。渥太华大学理学硕士生 Guillaume Thekkadath 博士、该论文第一作者称:“我们的全息图记录了两个光源强度之间的相互关系。这些相关性甚至可以揭示单个光子中的量子干涉效应。” 这项研究的意义是深远的,从加强现有的全息技术,以全新的应用领域,如天文学,纳米技术和量子计算。全息术的未来无疑是光明的。 量子光和经典光全息术的强度干涉测量研究发表在《科学进展》杂志上。
  • 《前沿 | 美国推出全球首款全硅八通道雪崩光电探测器芯片》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-09-09
    • 为满足日益增长的数据流量需求,硅光子技术已经发展成为一种有前途的超高速低成本光互连技术。然而在硅光平台上实现高性能光电探测器,仍然需要克服诸多困难,例如需要集成更窄的带隙材料,而这会带来更复杂的制造工艺、更高的制造成本和量产问题。 近日,美国推出全球首款经济高效的八通道雪崩光电探测器全硅接收芯片。八个通道均表现出卓越的性能和一致性,响应度为0.4AW-1,暗电流低至1nA,带宽高达40GHz。每通道支持160Gbs-1的创纪录数据传输和低于-50dB的超低串扰,总数据传输速率高达1.28Tbs-1。相关成果发表在Nature Photonics上。 新型双微环谐振器设计,突破带宽和响应度极限 硅光子技术采用成熟的CMOS制造工艺,具有更高的集成密度、更低的成本和CMOS加工精度等显著优势。该技术允许将光学芯片直接与电子芯片(如CPU、GPU、张量处理单元和专用集成电路)共同封装。因此,可以重新配置网络以提供比当今电气解决方案高得多的带宽和效率。其中,高速、高响应度光电探测器在光学互联中必不可少。电信波长的光电探测器通常使用通过异质外延生长锗制造的器件来实现。但由于硅锗界面存在缺陷,硅锗光电探测器和雪崩光电探测器存在暗电流较高和可靠性较差的问题。除此之外,锗的高温外延生长复杂且成本高昂,并且在整个晶圆上厚度分布不均匀。高成本和复杂工艺程序导致使用该技术制备的光电探测器无法大规模商用。 为了解决这些问题,研究人员提出一种新型双微环谐振器光电探测器。相比于使用异质外延生长锗技术的光电探测器,该雪崩光电探测器采用全硅的集成方案,在制造成本上能够节省40%左右。双环系统有两个复杂的极点,它们会引起频率响应的峰值并改善光电探测器的带宽。这项工作中,研究人员将双微环谐振器的传输光谱设计为具有分裂共振而不是平坦的“盒状”响应以加宽带宽。与具有相同响应的单微环雪崩探测器相比,双微环雪崩探测器响应度-带宽积可提高约40%。除了带宽优势之外,双微环结构还显示出响应滚降和邻道抑制的急剧增加,能够极大地抑制相邻通道之间的串扰。 图1 双微环全硅雪崩光电探测器示意图 器件制备与性能表征 全硅雪崩光电探测器是在先进微晶圆代工厂采用标准硅光子工艺制造的,该制造工艺无需任何工艺修改即可与标准多项目晶圆运行完全兼容,能够大规模生产,具备低成本的优势。研究人员测量了八通道全硅雪崩光电探测器的透射光谱,测量的传输谱线上观察到分裂谐振,与设计高度一致。测量的相邻通道之间的串扰在所有频率上都小于-50dB,这在密集波分复用接收系统中可以忽略不计。测量结果表明,仅0.77nm的通道间隔就能保证串扰小于-40dB。除了抑制通道串扰之外,双微环结构的另一个优点是高带宽。 图2展示了该探测器芯片在-8V和-16.5dBm光功率下测量的所有八个通道的频率响应。在-8V的偏置电压下,可以看到每个通道的带宽都在40GHz以上,低偏置电压下无增益的最大带宽>50GHz。在增益为5.9(-8V)或8.9(-8.1V)时,所有器件在偏置电压为-8V和-8.1V时分别实现了约40GHz和35GHz的3dB带宽,这几乎时单微环雪崩探测器的两倍。增益带宽积在-8V时为236GHz,在-8.1V时为311GHz,与商用InAlAs雪崩光电探测器相当。研究人员还研究了该八通道探测器芯片的动态特性,在不使用跨阻放大器的情况下进行了眼图测量。图2还显示了测量的92Gbs-1非归零(NRZ)和160Gbs-1PAM-4眼图。测量结果表明该八通道探测器芯片能够支持1.28Tbs-1的数据传输。 图2八通道雪崩光电探测器芯片测试结果 总结与展望 这项工作中,研究人员演示了一种八通道全硅双微环探测器芯片,能够检测创纪录的1.28Tbs-1的高速数据,相邻通道具有-50dB的超低串扰,芯片成本降低40%左右。每个通道都表现出出色的一致性,暗电流低至1nA,响应度为0.4AW-1,带宽宽至40GHz,增益带宽积高至311GHz。该芯片设计方案优于之前的多通道方案,实现了响应度的两倍增加、带宽的两倍增加、数据的三倍提升和串扰的三倍减少。为未来高速、低成本光网络的实现铺平了道路。该技术完全兼容现有的CMOS工艺,具有极高的产率和良品率,预计将成为未来硅光子技术领域的标准组件。