《上海交通大学Nature Materials:水凝胶技术突破,高强韧水凝胶材料唾手可得!》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 来自材料牛

    水凝胶材料在生物医学领域展现了广阔的应用前景,成为当前最受关注的生物材料。力学性能是材料的应用前提,然而水凝胶材料天生质弱,强度低、韧性差,成为限制其应用的瓶颈难题。多年来,国内外研究人员倾注大量的时间与精力,致力于攻克这一难题。可以说,在水凝胶领域,掌握了解决力学难题的核心技术,就拥有了开启应用之门的钥匙。特别是近几年,伴随着产业界对水凝胶材料的青睐,相关技术的临床转化俨然已进入白热化竞争阶段。然而时至今日,这一问题始终没有得到有效解决。尽管当前已有多种提升水凝胶力学性能的方法,例如双网络策略以及基于聚乙烯醇的结构优化策略,但这些方法无一例外涉及冗长制备流程或苛刻制备条件,限制了其临床转化应用。

    为了攻克上述难题,上海交通大学林秋宁研究员/朱麟勇教授课题组提出一种全新的、广泛适用的水凝胶交联技术。基于该技术,常规的水溶性高分子如聚乙二醇、聚丙烯酰胺、聚丙烯酸、多糖等,仅需数秒光照即可形成既强(15.3 MPa)又韧(138.0 MJ m-3)的水凝胶材料,几乎颠覆了水凝胶的制备与力学属性。更惊人的是,该水凝胶材料能够循环拉伸超过10万次,展示了无与伦比的回弹性与耐疲劳性,完全能够与非水体系的弹性体材料如橡胶、聚氨酯等相媲美。该技术的提出,意味着高强韧水凝胶材料的制备将从此变得轻而易举,赋予水凝胶生物医用广阔的想象空间。基于该技术突破,原本无法加工的高精密、复杂水凝胶器件(如支架、血管等),现皆可通过光投影3D打印进行加工制造。相关成果2023年8月21日以“Rapid fabrication of physically robust hydrogels”为题发表于Nature Materials。第一作者为上海交通大学鲍丙坤博士、曾庆梅博士、李凯博士,以及华东理工大学温建锋教授,通讯作者为上海交通大学林秋宁研究员和朱麟勇教授。该工作得到华东理工大学涂善东院士团队在模拟计算、浙江大学贺永教授团队在3D打印方面的支持与帮助。

    该技术的一个优势在于,构筑的水凝胶材料不仅力学性能出色,而且其性能参数在很大范围内可按需调节。例如,选择合适配比,水凝胶材料展现优异的拉伸能力,能够拉伸屈服至原始长度的28倍。此时,水凝胶材料的韧性高达138.0 MJ m-3,比高韧性水凝胶材料的代表——双网络水凝胶——高出近一个数量级。如此高的韧性表现,甚至超越大多数金属与非金属材料,如高强度钢、尼龙、合成橡胶以及木材等,可以与蛛丝比肩。当配比改变,水凝胶亦可转变为不屈服的高强度材料,强度高达15.3 MPa。该强度代表已报道共价网络水凝胶的最高水平。值得注意的是,无论在哪种配比下,该技术制备的水凝胶都能够兼顾强度与韧性性能,克服材料“强韧互斥”的普遍矛盾。

    以聚乙二醇和透明质酸构筑的水凝胶为例,作者对该技术背后全新的“光偶联反应”原理进行了实验论证。在此过程中作者发现,该水凝胶形成了独特的微观结构:呈现力学有利的微观相分离;其中,聚乙二醇形成连续相,模量较低,透明质酸聚合形成分散相,模量较高;两相通过“光偶联反应”建立牢固界面,实现两相完整一体化。有趣的是,该微观结构无需人为精心设计或小心调控,在光照下数秒内即可自发形成。正是因为此,水凝胶的凝胶化过程异常快速且条件温和,具备临床易操作属性、契合生物安全性要求,从而奠定了该技术临床转化应用的基础。

    为了阐明强/韧水凝胶设计的关键,从而形成普适性构筑方法,作者系统研究了水凝胶微观结构与力学性能之间的“构效关系”。通过水凝胶拉伸前后微观结构的对比与分析,作者发现了强韧水凝胶设计的决定性因素:两相界面。只有界面够强,分散相在受力过程中才能发生有效、充分的破裂,从而消耗足够多能量,赋予材料高韧性。有限元模拟计算的结果表明,材料在受力过程中,应力更容易在两相界面处集中。同样的道理,界面越强,能够支撑的集中应力越高,材料的强度就越高。作者进一步设计实验,减弱界面强度,“反向”证明界面在高强韧水凝胶设计中的决定性作用。考虑已报道的纳米复合水凝胶虽具备相分离结构,但无牢靠界面支撑,论文结论有望启示解决该类水凝胶力学问题的新方向。

    最后,作者从水凝胶的制备时间、力学性能两个方面对新技术与现有水凝胶技术进行对比,展示新技术在水凝胶制备与力学性能方面无与伦比的综合优势。典型地,这些技术优势能够改变当前水凝胶3D打印现状,赋予打印器件更高的结构复杂性以及更高的打印精度。另外值得强调的是,除了水凝胶材料,该技术涉及的交联原理同样适用于非水材料体系,例如丙烯酸酯弹性体,在材料制备以及力学性能提升方面展现可移植的技术优势。

    值得一提的是,上海交通大学林秋宁研究员/朱麟勇教授团队就本论文提出的“光偶联反应”原创凝胶技术进行了完整的知识产权布局,从原料、制备、配方、产品及其临床应用进行全面保护,截止目前,共申请中国、PCT、美国、欧洲和日本等发明专利20项,已授权中国发明专利10项、美国发明专利3项、日本发明专利1项。基于此,团队开发了多款水凝胶墨水,可广泛应用于数字光处理(DLP)、挤出式等3D打印技术,用于加工制造高精度、复杂形状的水凝胶结构。同时,团队就该技术进行临床转化,当前已完成产品的工程化、安全性验证以及注册检验,定型了两款光固化医用胶产品,分别完成了多中心临床试验,并提交1项创新医疗器械申请。技术临床转化所依托的医疗科技公司已完成A轮融资。


    文章链接:https://doi.org/10.1038/s41563-023-01648-4

  • 原文来源:http://www.cailiaoniu.com/253716.html
相关报告
  • 《仿贻贝自粘附水凝胶生物电子》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-27
    • 近年来,可穿戴/植入生物电子由于其在个人医疗中的潜在应用而受到广泛的关注。但是,现阶段的生物电子一般都是依靠外部辅助设备固定于人体。这种基于外部辅助的固定在实际使用中会导致生物电子使用效果不稳定。因此,自粘附生物电子,通过提供与组织可靠和适形的接触以及稳定和保真的检测信号,可以缓解以上问题。但是,在湿润的人体组织表面获得长期稳定的自粘附是一项挑战。近年来,基于仿贻贝粘附的水凝胶已经被认为是一种具有潜力用于自粘附生物电子设计的材料。自粘附导电水凝胶能够提供稳定的表/界面电子信号检测,解决了目前可穿戴设备不能稳定获取人体组织表/界面生理信号的问题。 成果简介 鉴于在水凝胶领域的创新工作, 近日, 西南交通大学鲁雄教授团队受邀在 Adv. Funct. Mater. 期刊撰写特邀综述 “ Mussel-inspired hydrogels for self-adhesive bioelectronics” , ( DOI:10.1002/adfm.201909954 )。该论文系统总结了该团队提出的基于仿贻贝策略调控酚醌氧化还原机理,实现自粘附水凝胶及其广泛应用。 首先,从贻贝粘附化学机理出发,结合作者团队的前期基础。 重点介绍了利用限域空间和电子转移维持酚醌化学平衡从而实现仿贻贝长期粘附 。同时,该团队提出仿贻贝粘附化学是一种赋予生物电子多功能的新途径。然后,文章从五个方面对基于自粘附水凝胶生物电子的性能进行了详细讨论:(1)仿贻贝化学用于研发具有超强力学强度的自粘附水凝胶生物电子,突破了传统强韧水凝胶缺乏表面粘附性和细胞亲和性,不能用于组织修复再生的难题;(2)仿贻贝化学用于研发具有自修复能力的仿贻贝自粘附水凝胶生物电子,实现了仿贻贝水凝胶生物电子的损坏结构性能的自修复,保证了其长期稳定的使用;(3)仿贻贝化学用于研发具有透明性的仿贻贝自粘附水凝胶生物电子,解决了纳米填充导电水凝胶不透明和离子导电水凝胶生物相容性差,不能用于可视化生物电子应用的难题;(4)仿贻贝化学用于研发具有抗菌性的仿贻贝自粘附水凝胶生物电子,降低了可植入自粘附水凝胶生物电子细菌感染的风险;(5)仿贻贝化学用于研发用于极端环境的仿贻贝自粘附水凝胶生物电子,扩展了其应用环境,如高温、极寒、人体表面汗液湿润环境和人体植入体液环境。最后,文章提出了对下一代多功能水凝胶生物电子的展望与挑战。 西南交通大学谢超鸣副教授 为本文第一作者 ,西南交通大学鲁雄教授 和 美国西北大学丁永会研究助理教授 为共同通讯作者。
  • 《盘点 | 2017年浙大、中南大学、上海交大、北科大等高校新材料10大技术突破 每一项都可能颠覆未来》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-28
    • 工业制造,材料先行。作为我国七大战略性新兴产业和“中国制造2025”重点发展的十大领域之一,新材料产业被认为是21世纪最具发展潜力并对未来发展有着巨大影响的高技术产业。 伴随着国家政策的扶持和新一轮科技革命和产业变革的兴起,新技术新产品实现群体性突破,产业升级、材料换代步伐加快。与此同时,高校的科研能力也不断与时俱进,出现爆 炸性的突破。 将高校的研发成果转化成高价值专利,进行推广应用,不仅关系到发明人的利益,也关系到企业利益、行业的转型升级乃至整个国民经济的发展。年关将至,新材料在线®从高校科研成果出发,盘点2017年有哪些高校研发出创造性的新材料,以及他们突破了哪些技术难点。 1.北京理工大学发现金属有机骨架材料滤除PM2.5高达99.5% 图片来源于网络 材料简介:2月8日,北京理工大学王博教授及其团队将金属有机骨架材料化合物(MOFs)材料应用于空气过滤、净化与治理等方面的研究成果。MOFs材料是一种多孔结晶材料,由有机骨架和金属离子组成,这种材料可以通过静电吸附作用实现对大量的细微颗粒物的捕获。 材料优势:这种材料是目前世界上已知的吸附储存气体分子能力最强的一类材料,比表面积最高可达8000平方米每克,是活性炭、分子筛的10多倍。这种材料在可见光照射下,实现日光催化,将有害有机物分解为二氧化碳和水。进而使得滤除效率得以持续保持,长效作用,无二次污染,且滤除率超过99%。 2.全球首创!香港城市大学成功研制最强镁合金 图片来源于网络 材料简介:5月4日,国际顶尖的科学学术期刊《自然》发表了一篇题为“双相纳米结构铸就最强镁合金”的封面文章,这是中国结构材料界本世纪首次在《自然》杂志上发表封面文章,引发业界广泛关注。该科研团队研制了双相纳米晶结构的镁合金材料,通过磁控溅射法将直径约6 nm的MgCu2晶粒均匀地嵌入约2nm厚的富含镁的无定形壳中,生产获得具有非晶/纳米晶双相结构的镁基超纳尺寸双相玻璃晶(SNDP-GC),该材料强度是近乎理想的3.3 GPa,这也是迄今为止强度最大的镁合金薄膜。 材料优势:这种材料可用于生物降解植入,具有超高耐磨性能,病人可因此避免进行第二次手术以取出零件。同时,镁是对身体有益的元素,有助于康复。 另外,镁合金密度低,是一种理想的轻型结构材料,在消费电子工业、航空及汽车领域都有广泛的应用前景。 3.《nature》发表!北科大团队研发出新型超高强钢 图片来源:材料性能和测试 材料简介:《Nature》于4月10日刊登北京科技大学吕昭平教授团队研究成果,该团队基于晶格错配和高密度纳米析出的理念,设计并制备出超高强马氏体时效钢,强度最高达2.2GPa,还具有很好的塑性(大约8.2%)。而且由于采用廉价质轻的Al等元素代替高成本的Co、Ti等合金元素,还能大幅度削减成本。 材料优势:材料屈服强度进入2GPa的超高范围时,进一步改善材料延展性的难度几乎是成倍提高,高强高韧马氏体钢是满足轻量化及节能减排的重要手段。 4. 浙大高超教授团队发明高导热超柔性石墨烯膜 高导热超柔性石墨烯膜 (图片来源:新华网) 材料简介:浙江大学高分子系高超教授团队研发出一种高导热超柔性石墨烯组装膜,通过将石墨烯膜高温加热,膜中的含氧官能团在高温下分解释放出气体,石墨烯膜内部形成微气囊;再经过机械辊压成膜,微气囊的气体被排出,形成微褶皱,从而使新型石墨烯膜由“脆”变“柔”,并兼顾了良好的导热性能。 材料优势:导热率接近理想单层石墨烯导热率的40%,可反复折叠6000次、弯曲十万次,有望应用在电子元件导热、新一代柔性电子器件及航空航天等领域。 5、中南大学研发出耐3000℃烧蚀的新材料 或为高超声速飞行器研制铺平道路 超高音速飞行器在大气中飞行(图片来源:新华社) 材料简介:8月21日从中南大学获悉,中南大学黄伯云院士团队通过大量实验,开发了一种新型的耐3000℃烧蚀的陶瓷涂层及其复合材料。这种陶瓷是一种多元含硼单相碳化物,具有稳定的碳化物晶体结构,由Zr、Ti、C和B四种元素组成。研发团队采用熔渗工艺将多元陶瓷相引入到多孔炭/炭复合材料中,进而获得一种非常有潜力的新型Zr-Ti-C-B陶瓷涂层改性的炭/炭复合材料。 材料优势:这种新型陶瓷涂层及其复合材料可耐3000℃烧蚀,这一发现有可能为高超声速飞行器的研制铺平道路。 6、上海交大研制出超强纳米陶瓷铝合金 或成下一代航空新材料 图片来源:新华网 材料简介:上海交大材料科学与工程学院教授王浩伟领衔的科研团队研制出超强纳米陶瓷铝合金,让铝里“长”出陶瓷。该材料的研发采用“原位自生技术”,通过熔体控制自生,陶瓷颗粒的尺寸由几十微米降低到纳米级,突破了外加陶瓷铝基复合材料塑性低、加工难等应用瓶颈。 材料优势:这种新材料不仅轻,强度和刚度甚至超过了“太空金属”钛合金,具有重量轻、高刚度、高强度、抗疲劳、低膨胀、高阻尼、耐高温等特点,有望带动航空、汽车、高铁领域步入更轻、更节能的新材料时代。 7、川大教授联合哈佛博士后开发出“自愈”橡胶材料 图片来源于网络 材料简介:四川大学校客座教授吴金荣联合哈佛大学博士后研究员蔡立恒通过使用一种分子绳来将共价键和可逆键结合在一起,允许它们在分子尺度上均匀混合,从而制造出一种透明、坚韧可以“自愈”的橡胶。 材料优势:采用这种橡胶,轮胎爆胎后可以在机动车行进中自我修复,并像天然橡胶一样强韧,极大提高机动车的整体安全,并有助于减少交通事故。 8、合肥工业大学研发智能水凝胶 一分钟实现96%自修复 纳米复合水凝胶的自修复性能 (图片来源:合肥工业大学新闻文化网) 材料简介:合肥工业大学11月1日消息,该校科研人员成功设计出一种新型材料,能在1分钟内实现96%的自修复。该校科研人员将单分散的金纳米颗粒作为水凝胶三维网络结构的交联剂,利用金纳米颗粒优异的光热性能和配位键在高温下的动态不稳定性,成功实现了纳米复合水凝胶自修复性能的大幅提升。 材料优势:在波长808纳米的近红外光诱导下,该新型材料在1分钟内即可实现96%的自修复。同时,该课题组对凝胶的生物安全性评估结果表明,该材料具有良好的可注射性能及生物相容性,可作为药物载体负载抗癌药物在近红外光下进行可控释放。 9、香港大学研制出防水防油物料 不用再为洗衣服发愁 图片来源于网络 材料简介:11月14日,香港大学工程学院机械工程系教授王立秋带领团队研发出崭新的防水及防油物料。新物料的设计模仿了节肢动物跳虫的表皮构造,以增加物料的强韧度和防水能力,有效地解决了防水能力和强韧度难以兼容的矛盾。 材料优势:只要将它覆盖于纺织品、金属、玻璃等表面上,便能达到防油防水的效果。这一物料使得不洗衣服成为可能且制造方法成本较低,每平方米只需0.7港元至1.3港元。 10、《Science》发表西安交大研发新型相变材料--钪锑碲合金 突破相变存储速度极限 新式钪锑碲(SST)相变存储器件~0.7纳秒的高速写入操作以及其微观结晶化机理(图片来源于网络) 材料简介:11月16日,西安交通大学马恩教授,研发出一种新型相变材料——钪锑碲合金,该材料的成功研制突破了相变存储速度极限。该材料利用结构适配且更加稳定的钪碲化学键来加速晶核的孕育过程,显著降低形核过程的随机性,大幅加快结晶化即写入操作速度。现研究成果已发表于《Science》 材料优势:这一研究成果对深入理解和调控非晶态材料的形核与生长机制具有重要的指导意义,并为实现我国自主的通用存储器技术奠定了基础。