《可再生塑料制成的二氧化碳和植物》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2016-03-24
  • 斯坦福大学化学研究生和助理教授开发出一种新颖的方法,使可再生塑料从二氧化碳和普通植物中提取。研究人员表示,这项新技术能够提供能源的低碳替代品,塑料瓶和目前由石油制成的其他物品。“我们的目标是替代原料的用塑料制成的二氧化碳的产品”斯坦福大学的化学系助理教授表示,“如果你能做到不使用大量的不可再生能源,可以显著降低碳足迹的塑料工业,我们正在尝试”。

相关报告
  • 《首创!将阳光和二氧化碳直接转化为可再生燃料》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-08-09
    • 剑桥大学的研究人员开发出一种太阳能技术,可将二氧化碳和水转化为液体燃料,并将其作为即用型燃料直接添加到汽车发动机中。有关这一新技术的相关内容发表在了《自然能源》上。 研究人员利用光合作用,直接将二氧化碳、水和阳光转化为多碳燃料——乙醇和丙醇,此类燃料具有高能量密度,易于储存和运输。 与化石燃料相比,该太阳能燃料碳排放为零,且完全可再生;而同大多数生物乙醇相比,此类燃料也不会占用任何用于粮食生产的农业用地。 尽管该技术仍处于实验阶段,但研究人员表示,他们研发的“人造树叶”将成为化石能源经济体进行能源转型的重要一环。 生物乙醇由植物制成,不含化石燃料,因而备受追捧,被人们视为更清洁的汽油替代品。如今,道路上大多数汽车和卡车使用的汽油中乙醇含量高达10%(E10燃料)。 据美国农业部数据显示,美国作为世界上最大的生物乙醇生产国,其玉米种植总量中,近45%用于乙醇生产。 欧文·莱斯纳(Erwin Reisner)教授是该项研究的负责人,他指出:“像乙醇这样的生物燃料技术之所以引发争议,主要是因为其占用了农业用地。” 近年来,莱斯纳位于优素福·哈米德(Yusuf Hamied)化学部门的研究团队受光合作用(即植物将阳光转化为养料的过程)的启发,一直在利用“人造树叶”开发可持续的零碳排燃料。 迄今为止,这些“人造树叶”只能用于制造简单的化学物质,如合成气(一种氢气和一氧化碳的混合物,用于生产燃料、药品、塑料和化肥)。 但为了增强该技术的实用性,研究人员还需要在光照条件下,利用该技术直接生产出更为复杂的化学物质。 现在,“人造树叶”可用于直接生产清洁乙醇和丙醇,而无需生产合成气这一中间步骤。研究人员开发了一种铜钯催化剂,并对其进行优化,使人造树叶能够生产更复杂的化学物质,尤其是多碳醇乙醇和正丙醇。这两种醇都是高能量密度燃料,易于运输和储存。 此前,其他科学家已经通过电力生产出类似的化学物质,但“人造树叶”技术仅利用太阳能就能产出如此复杂的化学物质,这是界内一重大突破。 该论文第一作者莫迪亚尔·拉哈曼博士(Dr Motiar Rahaman)提供了更多细节:“将阳光照射在人造树叶上,随后从二氧化碳和水中获取液体燃料,这一化学反应令人惊叹。通常情况下,当你试图通过人造树叶设备将二氧化碳转化为另一种化学产品时,你总会得到一氧化碳或合成气。但现在,我们已经成功利用太阳能生产出一种实用液体燃料。这一突破振奋人心,它为我们接下来的工作开辟了全新路径。” 目前,该设备仅是一个概念的验证,其实际效率仍有待发掘。 研究人员正在努力优化光吸收剂,使其能更好地吸收太阳光,并优化催化剂,以将更多阳光转化为燃料。 此外,研究人员还需进一步增加设备,从而实现燃料的大批量生产。 莱斯纳表示:“尽管还有很多工作要做,但我们已经展示了这些人造树叶的能力。最重要的是我们想要借此证明——在能源转型的过程中,我们可以超越最简单的分子,直接制造出实用型化学产品。” 该项研究得到了欧盟委员会玛丽·斯克多夫斯卡·居里奖学金、剑桥信托基金和温顿可持续发展物理学项目的部分支持。
  • 《Cell:让细菌变成自养生物!靠消耗二氧化碳生长》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-12-04
    • 近日,据《Cell》杂志上的一项研究报道,以色列的研究人员创造出了一种新型大肠杆菌菌株,该菌株消耗二氧化碳作为能源,而不是有机化合物。这一成就凸显了细菌新陈代谢的惊人可塑性,并为未来的碳中和生物生产提供框架。 在这项研究中,研究人员的主要目标是建立一个方便的科学平台,以增强对二氧化碳的固定,这可以帮助解决与可持续生产食品和燃料以及二氧化碳排放引起的全球变暖等有关问题。大肠杆菌作为生物技术的主要力量,将其碳源从有机碳转化为二氧化碳是迈向建立这样一个平台的重要一步。 因此,研究人员利用新陈代谢的重新布线和实验室进化将大肠杆菌转化为自养生物。工程菌株从可再生资源电化学产生的甲酸盐中收集能量,因为甲酸盐是一种有机一碳化合物,不能作为大肠杆菌的碳源,所以不支持异养途径。研究人员还对该菌株进行了工程改造,以产生用于碳固定和还原以及从甲酸中收集能量的非天然酶。但是,仅凭这些变化不足以支持自养,因为大肠杆菌的代谢适应了异养生长。 为了克服这一难题,研究人员将适应性实验室进化作为一种代谢优化工具。通过将参与异养生长的中央酶失活,使细菌更依赖自养途径生长,还利用有限数量的木糖(有机碳的来源)在包含大量甲酸盐和10%二氧化碳的化学恒温器中培养细胞,以抑制异养途径。最初供应约300天的木糖可足够支持细胞增殖以启动进化。 在这种环境中,与依赖木糖作为生长碳源的异养生物相比,自养生物具有很大的选择性优势,它们将二氧化碳作为唯一碳源生产生物质,研究人员使用同位素标记证实了分离出的细菌是真正的自养细菌。 使用13C的同位素标记实验表明,所有生物质组分均由二氧化碳作为唯一碳源产生 为了使实验室进化的通用方法成功,研究人员必须将所需的细胞行为变化与适应性优势相结合。通过对进化的自养细胞的基因组和质粒进行测序发现,在进化过程中仅获得了11个突变:一类突变是影响编码与碳固定循环相关的酶的基因;第二类是在以前的自适应实验室进化实验中通常观察到突变的基因中发现的突变,这表明它们不一定对自养途径具有特异性;第三类是未知基因的突变。 这项研究首次描述了细菌生长方式的成功转化,使得肠道细菌以类似植物的方式生存。令人惊讶的是,进行这种转变所需基因改变的数量相对较小。