《首创!将阳光和二氧化碳直接转化为可再生燃料》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2023-08-09
  • 剑桥大学的研究人员开发出一种太阳能技术,可将二氧化碳和水转化为液体燃料,并将其作为即用型燃料直接添加到汽车发动机中。有关这一新技术的相关内容发表在了《自然能源》上。

    研究人员利用光合作用,直接将二氧化碳、水和阳光转化为多碳燃料——乙醇和丙醇,此类燃料具有高能量密度,易于储存和运输。

    与化石燃料相比,该太阳能燃料碳排放为零,且完全可再生;而同大多数生物乙醇相比,此类燃料也不会占用任何用于粮食生产的农业用地。

    尽管该技术仍处于实验阶段,但研究人员表示,他们研发的“人造树叶”将成为化石能源经济体进行能源转型的重要一环。

    生物乙醇由植物制成,不含化石燃料,因而备受追捧,被人们视为更清洁的汽油替代品。如今,道路上大多数汽车和卡车使用的汽油中乙醇含量高达10%(E10燃料)。

    据美国农业部数据显示,美国作为世界上最大的生物乙醇生产国,其玉米种植总量中,近45%用于乙醇生产。

    欧文·莱斯纳(Erwin Reisner)教授是该项研究的负责人,他指出:“像乙醇这样的生物燃料技术之所以引发争议,主要是因为其占用了农业用地。”

    近年来,莱斯纳位于优素福·哈米德(Yusuf Hamied)化学部门的研究团队受光合作用(即植物将阳光转化为养料的过程)的启发,一直在利用“人造树叶”开发可持续的零碳排燃料。

    迄今为止,这些“人造树叶”只能用于制造简单的化学物质,如合成气(一种氢气和一氧化碳的混合物,用于生产燃料、药品、塑料和化肥)。 但为了增强该技术的实用性,研究人员还需要在光照条件下,利用该技术直接生产出更为复杂的化学物质。

    现在,“人造树叶”可用于直接生产清洁乙醇和丙醇,而无需生产合成气这一中间步骤。研究人员开发了一种铜钯催化剂,并对其进行优化,使人造树叶能够生产更复杂的化学物质,尤其是多碳醇乙醇和正丙醇。这两种醇都是高能量密度燃料,易于运输和储存。

    此前,其他科学家已经通过电力生产出类似的化学物质,但“人造树叶”技术仅利用太阳能就能产出如此复杂的化学物质,这是界内一重大突破。

    该论文第一作者莫迪亚尔·拉哈曼博士(Dr Motiar Rahaman)提供了更多细节:“将阳光照射在人造树叶上,随后从二氧化碳和水中获取液体燃料,这一化学反应令人惊叹。通常情况下,当你试图通过人造树叶设备将二氧化碳转化为另一种化学产品时,你总会得到一氧化碳或合成气。但现在,我们已经成功利用太阳能生产出一种实用液体燃料。这一突破振奋人心,它为我们接下来的工作开辟了全新路径。”

    目前,该设备仅是一个概念的验证,其实际效率仍有待发掘。

    研究人员正在努力优化光吸收剂,使其能更好地吸收太阳光,并优化催化剂,以将更多阳光转化为燃料。

    此外,研究人员还需进一步增加设备,从而实现燃料的大批量生产。

    莱斯纳表示:“尽管还有很多工作要做,但我们已经展示了这些人造树叶的能力。最重要的是我们想要借此证明——在能源转型的过程中,我们可以超越最简单的分子,直接制造出实用型化学产品。”

    该项研究得到了欧盟委员会玛丽·斯克多夫斯卡·居里奖学金、剑桥信托基金和温顿可持续发展物理学项目的部分支持。

  • 原文来源:http://www.nengyuanjie.net/article/79128.html
相关报告
  • 《硅纳米晶体将二氧化碳转化为燃料》

    • 来源专题:纳米科技
    • 编译者:chenfang
    • 发布时间:2016-09-02
    • 终端氢化的硅纳米晶体(简称纳米结构氢化物)平均直径3.5纳米,具有光学吸收强度足等特性,可充分吸收近红外、可见和紫外波段的太阳光,且其表面有很强的化学还原剂,能够有选择性地将气态二氧化碳转化为气态一氧化碳,有望带来一种既能获得能量,又不会排放有害气体的新方法。
  • 《太阳能应用新突破:将二氧化碳转化为燃料》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-06-29
    • 据油价网6月11日报道,植物及其将光和空气转化为燃料的巧妙方式,已为许多科学家带来了灵感。如今,光合作用为解决我们的二氧化碳问题奠定了基础。瑞典林雪平大学(Swedish Linkping University)的研究人员发现了一种利用太阳能将二氧化碳转化为其他化学物质作为燃料的方法。他们设计了一种称之为光电极的东西,这种光电极覆盖在一层石墨烯上,石墨烯是一种被广为宣传的材料,基本上就是一层碳原子,它能捕获太阳能并产生电荷载体。接下来,它们将二氧化碳和水转化为甲烷、一氧化碳和甲酸。   这是最新迹象,表明正在努力寻找利用二氧化碳的方法,而二氧化碳是许多环境倡议甚至《巴黎协定》本身的目标。而且这种动力正在加快,技术突破的可能性可能会持续下去。   例如,今年早些时候,美国国家可再生能源实验室和南加州大学宣布,他们已经制造出一种新型催化剂,可以使氢化——一种比将二氧化碳转化为碳氢化合物更便宜的过程。   他们的催化剂利用纳米技术添加了碳化钼的纳米颗粒。碳化钼是一种金属和碳的化合物,具有广泛的应用范围,其中包括将二氧化碳转化为一氧化碳以用于化学生产,以及转化为碳氢化合物。   在所有寻求利用我们在大气中释放的二氧化碳的项目中,成本是一个重要的考虑因素。例如,碳捕获技术的成本昂贵,许多人认为,这种技术永远也负担不起,不可能成为大规模解决全球排放问题的合理方法。