《研究发现叶绿体蛋白质传送器的组装原理》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-08
  • 叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基因编码。核基因编码的叶绿体蛋白前体(preprotein)是在细胞质中由80 S核糖体合成,其氨基端带有一段转运肽(transit peptide)。转运肽具有类似进入叶绿体的入场券的作用。前体蛋白需要通过位于叶绿体内外膜上的蛋白质转运体复合物(“传送器”)介导被运送到叶绿体中。位于叶绿体外膜上的蛋白转运体被称为TOC(Translocon on the Outer Chloroplast membrane),而位于内膜上的转运体为TIC(Translocon on the Inner Chloroplast membrane)。TOC和TIC是由多个蛋白亚基组成的膜蛋白复合体,可介导众多不同叶绿体蛋白的跨膜转运。它们对于叶绿体的生成、光合作用复合体的组装以及各种代谢途径的运转起着关键作用。

      在过去30年,组成TOC和TIC的不同蛋白亚基陆续被发现并得到鉴定和研究。近年来的工作揭示了植物和绿藻叶绿体中存在一种由TOC和TIC共同组成的超分子复合体(TOC-TIC超复合体)。然而,TOC和TIC中各亚基之间如何组装在一起形成运送蛋白质的孔道?二者之间如何进一步组装形成跨越内外膜的超分子复合体,前体蛋白的运输路径位于传送器的哪个部位?这一系列的关键科学问题有待进一步阐明。

      1月26日,中国科学院生物物理研究所柳振峰课题组与瑞士日内瓦大学教授Jean-David Rochaix合作,在《自然》(Nature)上,在线发表了题为Architecture of chloroplast TOC-TIC translocon supercomplex的研究论文。

      该研究通过解析莱茵衣藻Chlamydomonas reinhardtii来源的TOC-TIC超分子复合体的冷冻电镜结构(图1),发现并定位组成该复合体的13个不同蛋白亚基。除Tic214蛋白由叶绿体基因编码外,其他蛋白均由核基因编码。这些蛋白共同组成了位于外膜的TOC复合物、膜间隙复合物(ISC)和位于内膜的TIC复合物。最大的一个膜蛋白Tic214跨越内膜、膜间隙和外膜,如同一座桥连接了位于内外膜和膜间隙的不同蛋白亚基,可能起到类似脚手架的作用(图2)。位于外膜上的TOC复合物主要由Toc34、Toc90和Toc75共同形成,Ctap4-Ctap3复合物位于Toc90的侧面。Toc90和Toc75蛋白在外膜上形成一种混合的β-桶状结构,有一个朝向胞质侧的入口和两个朝向膜间隙开放的出口,且有一个面向膜内脂双层的侧向开口。Toc90和Tic214相互作用的界面上存在一个六磷酸肌醇(也称植酸,InsP6)分子,起到稳定TOC复合物装配的作用。膜间隙复合物主要包括Tic214、Tic100、Tic56、Ctap3和Ctap5,它们相互缠绕并形成梯形塔状结构。位于内膜上的TIC复合物主要包括Tic214、Tic20、Ctap5,以及三个分别命名为Simp1、Simp2和Simp3的小亚基。研究在Tic214和Tic20界面的孔道中发现四个脂类分子,且它们具有稳定内膜复合物组装和防止渗漏的作用。

      科研人员对TOC和TIC复合物中的孔道特征进行细致分析,并通过分子动力学模拟对转运肽和TIC复合物的相互作用进行预测。此外,该研究观察到分别位于TOC和TIC中的两个孔道是由位于膜间隙区的表面沟槽连接。在综合考虑此前生物化学和功能研究成果的基础上,该团队提出前体蛋白可通过TOC-TIC超复合体中的多个不同转运途径进行分选和进入叶绿体内部的不同微区。

      研究工作得到国家自然科学基金国家相关人才计划项目、中国科学院稳定支持基础研究领域青年团队计划、中国科学院战略性先导科技专项(B类)、国家重点研发计划的支持。

  • 原文来源:https://www.cas.cn/syky/202301/t20230127_4873154.shtml
相关报告
  • 《 研究揭示叶绿体蛋白泛素化介导的光合作用调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-05
    •        光合作用通过将二氧化碳转化为有机物,不仅提供地球上大多数生物的食物来源,而且释放氧气并控制大气中的二氧化碳含量。在全球碳中和的背景下,研究光合作用的调控机制,具有重要的理论意义和应用价值。叶绿体作为植物的关键细胞器,执行包括光合作用在内的核心代谢过程。叶绿体功能的建立和维持需要对其蛋白质稳态进行精确调节。然而,光合作用许多核心组分的调控机制目前未知。   近期研究发现的叶绿体蛋白降解途径——Chloroplast-associated Protein Degradation(CHLORAD),通过泛素-蛋白酶体系统调控叶绿体蛋白转运,改变叶绿体蛋白质稳态,介导植物的器官发育和抗逆境过程。在CHLORAD系统中,E3泛素连接酶SP1、通道蛋白SP2以及起到“分子马达”作用的CDC48分子伴侣蛋白,共同参与对叶绿体蛋白的泛素化修饰以及从叶绿体向细胞质的逆向转运过程,以便被细胞质中的蛋白酶体所降解。以往研究仅揭示了位于叶绿体外膜的TOC蛋白复合体成员可被CHLORAD降解。而多数叶绿体蛋白位于细胞器内部,CHLORAD是否可直接作用于这些内部的底物尚无证据。   11月17日,中国科学院分子植物科学卓越创新中心凌祺桦研究组与英国牛津大学植物科学系教授Paul Jarvis研究组合作,在Science Advances上,在线发表了题为Ubiquitination acts inside chloroplasts to directly regulate photosynthesis的研究论文。该研究发现CHLORAD直接参与调控更广泛的叶绿体靶蛋白。这些靶蛋白包括一些叶绿体内部的蛋白(如内膜、基质和类囊体蛋白),表明CHLORAD对叶绿体的作用已延伸到细胞器的内部。这些蛋白涉及叶绿体功能的各领域,例如光合作用、脂质代谢、物质转运、逆境抗性等,显示该途径调控了比预期更广泛的目标蛋白,拓展了CHLORAD的生物学意义。   科研团队综合应用定量蛋白质组学、泛素化修饰组学、比较转录组学、脂质代谢组学、生物化学、细胞生物学、植物生理学等技术手段,系统性地揭示了叶绿体内部的许多蛋白(包括类囊体膜中的光系统I、II组分)存在泛素化修饰。研究发现许多由叶绿体基因组自身编码的相关蛋白发生了修饰,显示了泛素化修饰作用于叶绿体内部蛋白。研究进一步阐明了CHLORAD组分CDC48和SP2介导泛素化光系统蛋白(如PsaA、CP43)逆向转运和降解的新途径。该成果揭示了过去未发现的叶绿体内部蛋白降解途径以及调控光合作用的崭新模式。迄今为止,研究认为,位于叶绿体内部的蛋白主要由原核生物起源的蛋白酶(即FtsH、Deg、Clp等)在细胞器内部调节。然而,本研究发现CHLORAD系统可联合运用叶绿体和细胞质内的泛素-蛋白酶体系统协同调控光系统运作效率和叶绿体其他重要功能,如脂质代谢等。这一新途径在栽培植物的改良中具有潜在的应用前景,可望为粮食安全和碳中和做出贡献。   研究工作得到中国科学院战略性先导科技专项、国家自然科学基金、英国生物技术和生物科学研究理事会(BBSRC)等的支持。
  • 《植物所发现相分离驱动叶绿体内蛋白分选的新机制》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 在真核细胞中,细胞器的生物发生对于细胞功能和细胞存活至关重要。叶绿体作为植物中的独特细胞器,其此前的研究主要关注叶绿体被膜转运通道以及类囊体膜转运通道,但叶绿体蛋白在跨过叶绿体被膜后是如何穿过拥挤的基质空间,并精确的靶定到特异性的类囊体膜受体复合物的分子机制仍不清楚。此外,相分离作为近年来细胞生物学的一个热点,其对植物生理活动的调控也并不明晰。 为探究以上问题,中国科学院植物研究所研究人员以拟南芥为研究材料,发现了位于叶绿体基质的关键性蛋白转运分选因子STT1与STT2,揭示了其介导的分选、靶定机制。STT1与STT2形成寡聚体复合物特异的识别底物信号肽从而结合、分选底物,之后STT复合物与类囊体膜受体复合物Hcf106结合完成其靶定运输过程。阻碍STT-Hcf106结合会阻断Tat底物的运输,影响植物光合作用从而导致植物致死。研究人员通过大量的实验进一步揭示了相分离参与调控底物的分选、靶定机制:底物结合激活STT复合物进一步的组装相分离形成浓缩的液滴,STT-底物相分离液滴协助底物穿过叶绿体基质从而靶定到类囊体膜,而Hcf106能够抑制STT的相分离从而释放底物,完成底物的正确运输与装配。同时该研究通过分析细菌、酵母、高等植物与动物的分选因子,发现相分离可能是驱动蛋白分选运输的普遍机制。 该研究首次发现了相分离(形成液滴)调控叶绿体蛋白的运输,从而调控叶绿体的生物发生,这是国际上首次提出相分离驱动叶绿体内蛋白分选的新机制,强调了相分离调控蛋白运输是在所有物种都存在的普遍机制,同时也开拓了相分离与蛋白运输的研究领域,为研究细胞是如何精确调控其各种生理活动拓展了思路。相关研究成果于2020年3月12日发表于Cell上。 陈方 摘编自http://www.ibcas.ac.cn/keyanjinzhan/202003/t20200313_5515410.html 原文标题:植物所科研人员发现相分离驱动叶绿体内蛋白分选的新机制