《 研究揭示叶绿体蛋白泛素化介导的光合作用调控新机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-12-05
  •        光合作用通过将二氧化碳转化为有机物,不仅提供地球上大多数生物的食物来源,而且释放氧气并控制大气中的二氧化碳含量。在全球碳中和的背景下,研究光合作用的调控机制,具有重要的理论意义和应用价值。叶绿体作为植物的关键细胞器,执行包括光合作用在内的核心代谢过程。叶绿体功能的建立和维持需要对其蛋白质稳态进行精确调节。然而,光合作用许多核心组分的调控机制目前未知。

      近期研究发现的叶绿体蛋白降解途径——Chloroplast-associated Protein Degradation(CHLORAD),通过泛素-蛋白酶体系统调控叶绿体蛋白转运,改变叶绿体蛋白质稳态,介导植物的器官发育和抗逆境过程。在CHLORAD系统中,E3泛素连接酶SP1、通道蛋白SP2以及起到“分子马达”作用的CDC48分子伴侣蛋白,共同参与对叶绿体蛋白的泛素化修饰以及从叶绿体向细胞质的逆向转运过程,以便被细胞质中的蛋白酶体所降解。以往研究仅揭示了位于叶绿体外膜的TOC蛋白复合体成员可被CHLORAD降解。而多数叶绿体蛋白位于细胞器内部,CHLORAD是否可直接作用于这些内部的底物尚无证据。

      11月17日,中国科学院分子植物科学卓越创新中心凌祺桦研究组与英国牛津大学植物科学系教授Paul Jarvis研究组合作,在Science Advances上,在线发表了题为Ubiquitination acts inside chloroplasts to directly regulate photosynthesis的研究论文。该研究发现CHLORAD直接参与调控更广泛的叶绿体靶蛋白。这些靶蛋白包括一些叶绿体内部的蛋白(如内膜、基质和类囊体蛋白),表明CHLORAD对叶绿体的作用已延伸到细胞器的内部。这些蛋白涉及叶绿体功能的各领域,例如光合作用、脂质代谢、物质转运、逆境抗性等,显示该途径调控了比预期更广泛的目标蛋白,拓展了CHLORAD的生物学意义。

      科研团队综合应用定量蛋白质组学、泛素化修饰组学、比较转录组学、脂质代谢组学、生物化学、细胞生物学、植物生理学等技术手段,系统性地揭示了叶绿体内部的许多蛋白(包括类囊体膜中的光系统I、II组分)存在泛素化修饰。研究发现许多由叶绿体基因组自身编码的相关蛋白发生了修饰,显示了泛素化修饰作用于叶绿体内部蛋白。研究进一步阐明了CHLORAD组分CDC48和SP2介导泛素化光系统蛋白(如PsaA、CP43)逆向转运和降解的新途径。该成果揭示了过去未发现的叶绿体内部蛋白降解途径以及调控光合作用的崭新模式。迄今为止,研究认为,位于叶绿体内部的蛋白主要由原核生物起源的蛋白酶(即FtsH、Deg、Clp等)在细胞器内部调节。然而,本研究发现CHLORAD系统可联合运用叶绿体和细胞质内的泛素-蛋白酶体系统协同调控光系统运作效率和叶绿体其他重要功能,如脂质代谢等。这一新途径在栽培植物的改良中具有潜在的应用前景,可望为粮食安全和碳中和做出贡献。

      研究工作得到中国科学院战略性先导科技专项、国家自然科学基金、英国生物技术和生物科学研究理事会(BBSRC)等的支持。

  • 原文来源:https://www.cas.cn/syky/202211/t20221118_4855203.shtml
相关报告
  • 《微生物所叶健团队揭示红光调控植物抗虫媒病毒新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-01-13
    • 病害三角(disease triangle)是描述疾病流行规律的理论,该理论指出“病害三要素”为致病病原生物、易感宿主和适合的环境条件三者相互作用才能引起侵染性病害。已知超过1480种植物病毒中,近80%由媒介昆虫传播,植物虫传病毒是制约我国农作物高产稳产的主要因素之一。以往作物病毒病害的研究注重于病毒和植物宿主两个方面,而实际上参与病毒传播、病害发生的因子还有传毒媒介昆虫以及光照、温度、气候、生物周期节律等环境因子。作为人类赖以生存的最重要生化反应,植物光合作用主要吸收红光和蓝紫光并存储为化学能,最终为人类和其他动物提供必需的食物和能量。光作为主要的环境因子,不仅调控植物生长发育的每个环节,而且同病害的流行爆发紧密相关。然而光是如何影响植物抗病性,病原微生物又是如何适应宿主抗性机制从而促进自身的传播等问题,尚亟待得到科学解答。 近日,中国科学院微生物所叶健课题组在PLoS Pathogens在线发表了题为Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly的研究论文。该研究发现植物双生病毒卫星DNA编码的βC1蛋白可以通过靶向光信号途径的PIF转录因子家族调控的虫媒病毒抗性,促进虫媒病毒的快速传播,揭示了光调节双生病毒-烟粉虱-植物三者互惠共生的新机制。   本研究在前期工作的基础上,进一步以双生病毒中国番茄黄化曲叶病毒TYLCCNV与卫星DNA形成的侵染复合物为研究对象,发现双生病毒卫星感病植物和对媒介昆虫烟粉虱的吸引作用只有在光照条件下才会发生,而在黑暗条件下不会发生(图1A和1B)。已有研究表明βC1是病毒编码的关键决定因子,进一步利用单色光LED灯箱进行昆虫双选择实验,发现βC1转基因植物只有在红光和含有红光的白光条件下发生,而在黑暗、远红光和蓝光条件下没有显著差异 (图1C)。烟粉虱等大多数昆虫的视觉系统缺乏红光受体,是“红色色盲”,所以这种光依赖的烟粉虱选择行为改变主要是病毒感染植物后影响了昆虫嗅觉识别植物。 当植物受到昆虫取食后,会产生一系列的化学挥发物来调控昆虫的行为来趋避食草昆虫,其中萜烯类化合物 (Terpenes) 是植物挥发物中最丰富的一类化合物,研究报道部分倍半萜和单萜会趋避昆虫。该研究通过酵母双杂交筛选实验鉴定到光信号中的关键蛋白光敏色素互作蛋白 (PHYTOCHROME-INTERACTING FACTOR 3, PIF3) 可以与βC1蛋白互作,进一步Co-IP实验证明PIF3与βC1在光照和黑暗条件下均可以在植物体内互作 (图2A)。PIFs蛋白可以直接结合萜烯合酶 (Terpene synthase,TPS) 基因的启动子促进其转录 (图2B和2C),因此在PIF过表达的植物中,介体昆虫烟粉虱的产卵量减少、伪蛹发育缓慢 (图2D和2E),说明PIFs蛋白具有直接的抗虫作用。通过竞争性BiFC和pull-down实验发现βC1蛋白可以通过干扰PIF蛋白二聚体的形成不同程度的抑制其转录激活活性 (图2C)。 植物激素茉莉酸(jasmonic acid, JA)是一种介导植物抗虫的重要激素,转录因子MYCs是JA途径中的关键调控因子。MYC家族转录因子调控下游多种抗虫相关次生代谢物质的合成代谢相关基因,包括TPS基因。该课题组早期研究发现双生病毒βC1可以靶标MYC2, 通过干扰其二聚体的形成抑制MYC2-介导植物抗虫反应,与其媒介昆虫烟粉虱形成的互惠共生关系(Li et al. Plant Cell 2014)。PIF蛋白参与植物多个信号通路以参与发育过程以及不同的胁迫响应,包括光和JA途径。研究报道AtPIF4与AtMYC2相互作用,该研究还发现AtPIFs-AtMYC2的互作在一定程度上抑制了TPS基因的表达,而βC1可以促进AtPIF4-AtMYC2异源二聚体的互作进而进一步抑制TPS的表达,促进昆虫的取食。结合以上研究结果该论文提出以下工作模型:在健康植物中,PIFs和MYC2形成同源二聚体,结合在TPS基因启动子的不同区域,共同调节TPS基因表达,从而趋避烟粉虱;当植物受到双生病毒感染后,βC1一方面可以抑制PIFs或MYC2同源二聚体的形成,一方面又可以促进PIF- MYC2异源二聚体的形成,最终抑制了植物对烟粉虱的抗性反应,促进烟粉虱的取食,促进病毒的传播与扩散。本研究解析了光和JA信号共同调节病毒-昆虫-植物三者互作的新机制,为防控虫媒病害提供新的靶点,也为实现利用单色LED灯绿色防控双生病毒病害提供理论依据。 该文章由叶健课题组的副研究员赵平芝、助理研究员张璇和已毕业硕士研究生龚雨晴为共同第一作者,课题组王端、王宁、孙艳伟、高连博为文章的共同作者。值得一提的是,该研究得到了方荣祥院士、北京大学邓兴旺院士、美国加州大学戴维斯分校Daniel J. Kliebenstein教授、中国农业科学院植物保护研究所周雪平教授、南京农业大学教授许冬清、浙江大学刘树生教授的大力支持,也为该文的共同作者,叶健研究员为通讯作者。感谢清华大学陈浩东教授和中国农业大学李继刚教授提供了宝贵的抗体材料。该研究受到国家自然科学基金重点项目、国家重点研究和发展计划生物安全专项、国家相关人才计划等项目的支持。
  • 《植物所发现相分离驱动叶绿体内蛋白分选的新机制》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 在真核细胞中,细胞器的生物发生对于细胞功能和细胞存活至关重要。叶绿体作为植物中的独特细胞器,其此前的研究主要关注叶绿体被膜转运通道以及类囊体膜转运通道,但叶绿体蛋白在跨过叶绿体被膜后是如何穿过拥挤的基质空间,并精确的靶定到特异性的类囊体膜受体复合物的分子机制仍不清楚。此外,相分离作为近年来细胞生物学的一个热点,其对植物生理活动的调控也并不明晰。 为探究以上问题,中国科学院植物研究所研究人员以拟南芥为研究材料,发现了位于叶绿体基质的关键性蛋白转运分选因子STT1与STT2,揭示了其介导的分选、靶定机制。STT1与STT2形成寡聚体复合物特异的识别底物信号肽从而结合、分选底物,之后STT复合物与类囊体膜受体复合物Hcf106结合完成其靶定运输过程。阻碍STT-Hcf106结合会阻断Tat底物的运输,影响植物光合作用从而导致植物致死。研究人员通过大量的实验进一步揭示了相分离参与调控底物的分选、靶定机制:底物结合激活STT复合物进一步的组装相分离形成浓缩的液滴,STT-底物相分离液滴协助底物穿过叶绿体基质从而靶定到类囊体膜,而Hcf106能够抑制STT的相分离从而释放底物,完成底物的正确运输与装配。同时该研究通过分析细菌、酵母、高等植物与动物的分选因子,发现相分离可能是驱动蛋白分选运输的普遍机制。 该研究首次发现了相分离(形成液滴)调控叶绿体蛋白的运输,从而调控叶绿体的生物发生,这是国际上首次提出相分离驱动叶绿体内蛋白分选的新机制,强调了相分离调控蛋白运输是在所有物种都存在的普遍机制,同时也开拓了相分离与蛋白运输的研究领域,为研究细胞是如何精确调控其各种生理活动拓展了思路。相关研究成果于2020年3月12日发表于Cell上。 陈方 摘编自http://www.ibcas.ac.cn/keyanjinzhan/202003/t20200313_5515410.html 原文标题:植物所科研人员发现相分离驱动叶绿体内蛋白分选的新机制