《探索 | 利用非线性介电超表面实现对光的非对称控制》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-07-04
  • 澳大利亚国立大学与德国、新加坡的联合研究团队近日成功实现利用纳米结构的介电超表面来控制光的传输,能够通过从正面或背面照射超表面来生成不同的图像。研究人员表示,他们的研究依赖于红外光到光辐射的非线性转换,有望通过光学器件达到与集成电子芯片相同的效果。

    尽管光的非对称控制已经在电子通信和高功率激光等领域实现了应用,但其工作设备光隔离器体积较大且价格昂贵。虽然通过与光子芯片上的波导耦合的微谐振器也可以减小光的非对称控制所需的器件尺寸。然而,即使是后者也要依赖于比入射光波长大好几倍的微结构,这对于光学器件的集成是个很大的挑战。

    在最新的研究中,团队展示了如何使用嵌入玻璃中的亚波长尺度介电圆柱形谐振器的平面阵列来实现对光的非对称控制。每个圆柱体的直径只有几百纳米,由非晶硅和氮化硅两个不同材料组成。这两种材料之间的折射率差异以及谐振器的尺寸决定了入射光如何被操纵。

    当器件被共振波长的光照射时,纳米柱的光学响应主要由电偶极子和磁偶极子(高阶多极子的贡献相对较小)支配。这导致了一个非常简单的结果——当照明来自正面时,磁偶极子被增强而电偶极子被抑制。当光线从后面射进来时,这两种反应恰好相反。

    图1 研究人员设计了一种纳米结构的介电超表面来控制光的传输,从正面能够看到一个图像,背面能够看到另一个图像

    为了利用这种不对称性进行光传输,研究人员用红外波长的强激光照射该结构,并利用三次谐波(一个非线性过程,光束中的三个光子组合在一起,产生一个频率为原频率三倍的单个光子)产生可见光。在这一过程中,由于磁偶极子效率远高于电偶极子,因此当红外输入为正向时,能够实现更亮的可见光输出。

    在实验过程中,研究人员使用了电子束光刻制造平面阵列。他们用波长大约 1475 nm 的强光照射一个直径超过 200 nm均匀的圆柱阵列,证实了前向的可见光输出比后向的要大很多倍。相反,当用强度相比较低的光照射相同的材料,由于无法引发非线性响应,这种反差几乎完全消失。

    随后,研究人员着手设计了一系列结构更为复杂的超表面,其中包括四种纳米圆柱的不同排列。为了便于制造,这四种纳米圆柱都具有相同厚度的硅和氮化硅层。但是它们形状不同:其中三种是不同大小的椭圆横截面,另一种是圆形横截面。这就产生了四种截然不同的互补输出——一种只在正向传输可见辐射,一种只在反向传输,一种在两个方向上的传输几乎相等,而另一种(圆形截面)在两个方向上都不传输。

    Kivshar 及其同事利用这些纳米圆柱制造了三个超表面,这些超表面生成了越来越复杂且独特的图像。第一种仅使用两种类型的圆柱体,当从前面照射时,显示一个黑色圆圈中的明亮正方形;当从后面照射时,显示一个明亮圆圈中的黑色正方形。第二种显示了明暗条纹或棋盘图案。而最后一种显示了澳大利亚的轮廓或悉尼歌剧院的风格化版本。同样,超表面显示何种图案都取决于照明的方向。

    图2 研究团队使用四种不同形状的介电纳米圆柱体制造超表面,从正面和背面观察时会产生不同的图像。左:由一组四个谐振器组装而成的超表面布局的电子显微镜图像。右:实验设计(左栏)和相应的结果(右栏)。

    研究人员认为,他们的发现“为超越线性光学限制的新型纳米光子元件铺平了道路。”他们意图对幅度、相位和偏振等多个电磁参数进行非对称控制,从而使其产生非对称的纠缠光子态,这有望在纳米级片上实现类似于电子二极管的光子器件,即光学隔离器。

    然而,要想实现这个目标,仍旧有许多障碍需要解决。除了重新设计谐振器以消除图像中不必要的串扰外,超表面的效率还需要提高。实验表明,这些设备能传输的功率比他们计算预期要少一个数量级,大约只有输入激光的百万分之一。要想解决该问题,其中一个选择是完全取消波长转换并采用所谓的非线性自作用。因此,研究团队将目光转向了德国帕德博恩大学的Sergey Kruk 所描述的“几种有前途的材料”。

相关报告
  • 《探索 | 全范德华超表面手性依赖激子光源》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-12-27
    • 单层过渡金属硫化物(TMD)由于具备室温稳定激子,所以在激子发光器件方面有着广泛的应用前景。由于其表面无悬挂键,因此易于与其他材料所构成的纳米光学结构进行无键合的范德华异质集成。另一方面,多层TMD由于层间耦合效应弱,其紧束缚的层内激子使得即便在远大于激子跃迁波长处也具有较高的折射率(n> 4)。这种独特的高折射率特性有利于获得传统介电材料难以实现的纳米尺度光场强束缚。然而与单层TMD不同,多层TMD是间接带隙半导体,其发光较弱,无法应用在发光器件中。 鉴于此,中国科学院苏州纳米所张兴旺团队将多层宽带隙TMD(WS2)超表面与单层窄带隙TMD(MoSe2)集成,构建了全范德华异质结构超表面手性依赖激子光源(图1)。在该器件中,单层MoSe2用作激子发光介质,而多层WS2超表面负责提供手性光学谐振以操控单层MoSe2的激子发射。由于单层MoSe2的激子发光波长处于多层WS2的透明光谱范围,所以该器件实现了无光学损耗的激子发光调控。另一方面,为实现手性依赖激子发光的方向性出射,该团队通过降低WS2超表面的结构对称性,在动量空间中构建了手性依赖的拓扑偏振奇异点(图2)。并且通过进一步地调控WS2超表面的结构对称性,可以将手性依赖的拓扑偏振奇异点在动量空间中进行大范围的调谐(图2)。研究发现,手性依赖的拓扑偏振奇异点能够阻止特定圆偏振光的远场耦合,而同时共振增强另一正交偏振光的远场耦合效率。因此,该全范德华异质结构超表面手性依赖激子光源能够实现手性依赖激子的定向发射。这种全范德华异质结构超表面光源将单层 TMD的强激子发射效应和多层 TMD 纳米光学结构的强光场调控能力集成在一起,实现了完全基于二维材料的强激子发射和调控功能。 图1. 全范德华异质结构超表面手性依赖激子光源 图2. 低对称WS2超表面中的手性依赖拓扑偏振奇异点在动量空间中的调谐
  • 《探索 | 低成本柔性超构表面,提高光电器件效率》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-08-30
    • 超构表面(metasurfaces)是超构材料(metamaterials)的二维对应物,是一种具有非同寻常特性的人造材料。这些经过特殊制备的表面带有工程图案,能够改变整个波长范围内电磁波的传播。 超构材料的发展始于金属-介电系统,但现在超构表面已发展成为全介电系统,它们仅通过表面效应就能提高效率,已在太阳能电池和发光二极管(LED)等光电器件中发挥着至关重要的作用。 可提高光电器件效率的低成本柔性超构表面 据麦姆斯咨询介绍,印度坎普尔印度理工学院光子学实验室R. Vijaya教授领导的研究团队,利用一种低成本的软光刻技术,在柔性聚合物基板上制作出了具有纳米凹坑和纳米凸点两种互补形状的介电超构表面。 研究人员通过实验确定,在相同间距下,纳米凸点图案高度较小的的表面,其反射雾度和透射雾度值要高于含有深度较大纳米凹点的表面。雾度与超构表面图案深度或高度的关系较大,而与图案间距的关系较小。在相同波长范围内从图案表面测量的远场透射曲线显示,散射随图案深度/高度与间距之比增加而增加。模拟结果证实,纳米凸点图案比纳米凹坑图案的透射雾度更高。通过控制这些表面的图案深度/高度与特征间距之比,既能提高光学雾度,又能实现总反射强度与总透射强度之间的平衡。 XY平面上具有纳米凹坑(a)和纳米凸点(b)的超构表面示意图 该研究成果已经以“Control of visible?range transmission and reflection haze by varying pattern size, shape and depth in flexible metasurfaces”为题发表在Frontiers of Optoelectronics期刊上。 研究人员采用一种自组装制成的低成本光子晶体,以纳米级特征尺寸作为主图案。因此,利用这种特别经济的方法,能获得超薄、柔性、图案化且易于在任何光滑表面上层叠的超构表面。 他们利用不同图案间距和高度/深度的样品,通过漫反射和全反射以及透射实验,确定了这些样品的雾度可以在整个可见光范围内得到控制。由于光的线性传播方向会限制器件的光电转换效率,因此,该研究成果有助于提高光电器件的效率。 雾度的散射效应会由透射/反射光束周围的云雾状斑块显现出来,而轻松控制雾度的散射程度可以提高太阳能电池的光吸收率或LED的光提取率。研究人员基于该方法的仿真支持了实验结果。