图:显示了两个波长不同的激光束如何影响原子核周围的电场,如箭头所示,以推动原子核自旋的方式推动电场
原则上,基于量子的设备,如计算机和传感器,在执行许多复杂任务时,可以大大优于传统的数字技术。但是,尽管科技公司以及学术和政府实验室进行了大量投资,但在实践中开发此类设备一直是一个挑战性的问题。
目前最大的量子计算机仍然只有几百个“量子比特”,即数字比特的量子等价物。
现在,麻省理工学院的研究人员提出了一种制造量子比特并控制它们读写数据的新方法。该方法在现阶段是理论上的,它基于测量和控制原子核的自旋,使用两种颜色略有不同的激光器发出的光束。
相关研究发表在《Physical Review X》杂志上的一篇论文中。
长期以来,核自旋一直被认为是基于量子的信息处理和通信系统的潜在构建块,光子也是如此,光子是电磁辐射的离散包或“量子”。但要让这两个量子物体协同工作很困难,因为原子核和光子几乎没有相互作用,它们的自然频率相差六到九个数量级。
在麻省理工学院团队开发的新过程中,入射激光束频率的差异与核自旋的跃迁频率相匹配,从而推动核自旋以某种方式翻转。
Cappellaro教授说:“我们发现了一种新颖、强大的方法,可以将核自旋与激光产生的光光子相结合。”。“这种新颖的耦合机制使它们能够进行控制和测量,这使得使用核自旋作为量子比特成为一种更有前途的尝试。”
研究人员表示,这个过程是完全可调的。例如,其中一个激光器可以被调谐到与现有电信系统的频率相匹配,从而将核自旋转变为量子中继器,从而实现远距离量子通信。
以前使用光影响核自旋的尝试是间接的,而是与围绕核的电子自旋耦合,这反过来又会通过磁相互作用影响核。但这需要附近存在不成对的电子自旋,并导致核自旋上的额外噪声。对于新方法,研究人员利用了许多核具有电四极的事实,这导致了与环境的电四极相互作用。这种相互作用可以受到光的影响,从而改变原子核本身的状态。
“核自旋通常是非常弱的相互作用,”Li说,“但通过利用某些核具有电四极的特性,我们可以诱导这种二阶非线性光学效应,这种效应直接耦合到核自旋,而没有任何中间电子自旋。这使我们可以直接操纵核自旋。”
除其他外,这可以精确识别甚至绘制材料的同位素,而拉曼光谱是一种基于类似物理学的成熟方法,可以识别材料的化学和结构,但不能识别同位素。研究人员表示,这种能力可能有很多应用。
至于量子存储器,目前用于或考虑用于量子计算的典型设备具有相干性时间,这意味着存储的信息可以可靠地保持完整的时间量,通常以微小的几分之一秒来测量。但对于核自旋系统,量子相干时间是以小时为单位测量的。
该团队表示,由于光学光子被用于通过光纤网络的远程通信,因此将这些光子直接耦合到量子存储器或传感设备的能力可能会为新的通信系统带来重大好处。此外,该效应可用于提供将一组波长转换为另一组波长的有效方式。“我们正在考虑使用核自旋来转换微波光子和光学光子,”Xu说。
到目前为止,这项工作是理论上的,因此下一步是在实际的实验室设备中实现这一概念,可能首先是在光谱系统中。“这可能是原理证明实验的一个很好的候选,”Xu说。他说,在那之后,他们将研究诸如记忆或转导效应等量子器件。