《探索 | 全范德华超表面手性依赖激子光源》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-12-27
  • 单层过渡金属硫化物(TMD)由于具备室温稳定激子,所以在激子发光器件方面有着广泛的应用前景。由于其表面无悬挂键,因此易于与其他材料所构成的纳米光学结构进行无键合的范德华异质集成。另一方面,多层TMD由于层间耦合效应弱,其紧束缚的层内激子使得即便在远大于激子跃迁波长处也具有较高的折射率(n> 4)。这种独特的高折射率特性有利于获得传统介电材料难以实现的纳米尺度光场强束缚。然而与单层TMD不同,多层TMD是间接带隙半导体,其发光较弱,无法应用在发光器件中。

    鉴于此,中国科学院苏州纳米所张兴旺团队将多层宽带隙TMD(WS2)超表面与单层窄带隙TMD(MoSe2)集成,构建了全范德华异质结构超表面手性依赖激子光源(图1)。在该器件中,单层MoSe2用作激子发光介质,而多层WS2超表面负责提供手性光学谐振以操控单层MoSe2的激子发射。由于单层MoSe2的激子发光波长处于多层WS2的透明光谱范围,所以该器件实现了无光学损耗的激子发光调控。另一方面,为实现手性依赖激子发光的方向性出射,该团队通过降低WS2超表面的结构对称性,在动量空间中构建了手性依赖的拓扑偏振奇异点(图2)。并且通过进一步地调控WS2超表面的结构对称性,可以将手性依赖的拓扑偏振奇异点在动量空间中进行大范围的调谐(图2)。研究发现,手性依赖的拓扑偏振奇异点能够阻止特定圆偏振光的远场耦合,而同时共振增强另一正交偏振光的远场耦合效率。因此,该全范德华异质结构超表面手性依赖激子光源能够实现手性依赖激子的定向发射。这种全范德华异质结构超表面光源将单层 TMD的强激子发射效应和多层 TMD 纳米光学结构的强光场调控能力集成在一起,实现了完全基于二维材料的强激子发射和调控功能。

    图1. 全范德华异质结构超表面手性依赖激子光源

    图2. 低对称WS2超表面中的手性依赖拓扑偏振奇异点在动量空间中的调谐

  • 原文来源:https://onlinelibrary.wiley.com/doi/10.1002/adma.202414174
相关报告
  • 《探索 | 利用非线性介电超表面实现对光的非对称控制》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-07-04
    • 澳大利亚国立大学与德国、新加坡的联合研究团队近日成功实现利用纳米结构的介电超表面来控制光的传输,能够通过从正面或背面照射超表面来生成不同的图像。研究人员表示,他们的研究依赖于红外光到光辐射的非线性转换,有望通过光学器件达到与集成电子芯片相同的效果。 尽管光的非对称控制已经在电子通信和高功率激光等领域实现了应用,但其工作设备光隔离器体积较大且价格昂贵。虽然通过与光子芯片上的波导耦合的微谐振器也可以减小光的非对称控制所需的器件尺寸。然而,即使是后者也要依赖于比入射光波长大好几倍的微结构,这对于光学器件的集成是个很大的挑战。 在最新的研究中,团队展示了如何使用嵌入玻璃中的亚波长尺度介电圆柱形谐振器的平面阵列来实现对光的非对称控制。每个圆柱体的直径只有几百纳米,由非晶硅和氮化硅两个不同材料组成。这两种材料之间的折射率差异以及谐振器的尺寸决定了入射光如何被操纵。 当器件被共振波长的光照射时,纳米柱的光学响应主要由电偶极子和磁偶极子(高阶多极子的贡献相对较小)支配。这导致了一个非常简单的结果——当照明来自正面时,磁偶极子被增强而电偶极子被抑制。当光线从后面射进来时,这两种反应恰好相反。 图1 研究人员设计了一种纳米结构的介电超表面来控制光的传输,从正面能够看到一个图像,背面能够看到另一个图像 为了利用这种不对称性进行光传输,研究人员用红外波长的强激光照射该结构,并利用三次谐波(一个非线性过程,光束中的三个光子组合在一起,产生一个频率为原频率三倍的单个光子)产生可见光。在这一过程中,由于磁偶极子效率远高于电偶极子,因此当红外输入为正向时,能够实现更亮的可见光输出。 在实验过程中,研究人员使用了电子束光刻制造平面阵列。他们用波长大约 1475 nm 的强光照射一个直径超过 200 nm均匀的圆柱阵列,证实了前向的可见光输出比后向的要大很多倍。相反,当用强度相比较低的光照射相同的材料,由于无法引发非线性响应,这种反差几乎完全消失。 随后,研究人员着手设计了一系列结构更为复杂的超表面,其中包括四种纳米圆柱的不同排列。为了便于制造,这四种纳米圆柱都具有相同厚度的硅和氮化硅层。但是它们形状不同:其中三种是不同大小的椭圆横截面,另一种是圆形横截面。这就产生了四种截然不同的互补输出——一种只在正向传输可见辐射,一种只在反向传输,一种在两个方向上的传输几乎相等,而另一种(圆形截面)在两个方向上都不传输。 Kivshar 及其同事利用这些纳米圆柱制造了三个超表面,这些超表面生成了越来越复杂且独特的图像。第一种仅使用两种类型的圆柱体,当从前面照射时,显示一个黑色圆圈中的明亮正方形;当从后面照射时,显示一个明亮圆圈中的黑色正方形。第二种显示了明暗条纹或棋盘图案。而最后一种显示了澳大利亚的轮廓或悉尼歌剧院的风格化版本。同样,超表面显示何种图案都取决于照明的方向。 图2 研究团队使用四种不同形状的介电纳米圆柱体制造超表面,从正面和背面观察时会产生不同的图像。左:由一组四个谐振器组装而成的超表面布局的电子显微镜图像。右:实验设计(左栏)和相应的结果(右栏)。 研究人员认为,他们的发现“为超越线性光学限制的新型纳米光子元件铺平了道路。”他们意图对幅度、相位和偏振等多个电磁参数进行非对称控制,从而使其产生非对称的纠缠光子态,这有望在纳米级片上实现类似于电子二极管的光子器件,即光学隔离器。 然而,要想实现这个目标,仍旧有许多障碍需要解决。除了重新设计谐振器以消除图像中不必要的串扰外,超表面的效率还需要提高。实验表明,这些设备能传输的功率比他们计算预期要少一个数量级,大约只有输入激光的百万分之一。要想解决该问题,其中一个选择是完全取消波长转换并采用所谓的非线性自作用。因此,研究团队将目光转向了德国帕德博恩大学的Sergey Kruk 所描述的“几种有前途的材料”。
  • 《探索 | 双激子结合能可用于电子产品》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-03-15
    • 澳大利亚墨尔本斯威本科技大学的研究人员首次使用先进的光谱技术量化了两个激子结合成双激子状态所需的能量。他们与澳大利亚国立大学的研究人员合作,直接测量二硫化钨 (WS2) 中的双激子结合能,二硫化钨 (WS2) 是一种二维材料,属于过渡金属二硫化物 (TMDC) 半导体家族。该研究发表在《2D Materials》上。 该团队表示,其研究结果可用于开发基于 TMDC 中双激子流的未来应用。 研究人员使用双量子多维相干光谱 (2Q-MDCS),一种用于探测双激发态的技术,来识别和分离单层 WS2 中的光激发双激子。为了明确地测量原子级薄 TMDC 材料中的双激子特征,研究人员运行了一系列具有精确控制的相位关系和明确定义的波矢量的超短光脉冲。 斯威本教授杰夫戴维斯说,“通过使用具有高精度的多个脉冲,我们可以选择性地直接探测双激发双激子状态,同时消除单激发激子状态的任何贡献,2Q-MDCS 方法使研究人员能够对双激子结合能进行直接实验测量。这种直接激发双激子的能力对于光致发光光谱等更常见的技术是无法实现的。” 图注:杰夫•戴维斯教授是量化双激子结合能研究的通讯作者,他领导的Swinburne超快光谱实验室。该大学的研究人员使用先进的光谱方法量化了两个激子结合成双激子态所需的能量。这项工作对开发新的量子材料和量子模拟器具有重要意义 当研究人员使用 2Q-MDCS 观察双激子时,相关激子会产生一个信号,相关激子是相互作用但未结合的激子对。研究人员认为未结合的双激子状态和双激子之间的能量差是双激子结合能的基本定义,测量值为 26 ± 2 meV。 “双激子峰和相关的双激子峰之间的能量差是测量双激子结合能的最佳手段,”研究员 Mitchell Conway 说。 “这是一个令人兴奋的观察,因为其他光谱技术没有观察到这些相关的激子。” 此外,研究人员还确定了单层 WS2 中双激子的性质。当使用 2Q-MDCS 解析双激子峰时,他们观察到由两个自旋相反的亮激子组成的双激子,称为亮-亮间隔双激子。 相比之下,报告单层 WS2 中的双激子的光致发光测量无法识别所涉及的特定激子。以前用于识别双激子的技术仅限于测量来自双激子到激子跃迁的光子。这种转变可能无法反映双激子或激子相对于基态的精确能量。 除了增加对双激子动力学和特征能量尺度的科学理解之外,该发现还可以支持基于双激子的设备的开发,例如更紧凑的激光器和化学传感器。 由于材料的维度降低,激子和激子复合物(例如双激子)的结合能在二维材料中得到增强。这种增加的结合能使双激子更容易获得,即使在室温下也是如此,并为一系列低能技术引入了在新材料中使用双激子的可能性。 康威说,“在我们将这些二维材料应用于下一代低能电子设备之前,我们需要量化驱动其功能的基本特性,准确识别单层半导体中双激子特征的能力也有助于推进新量子材料和量子模拟器的开发。”