《具有可调谐光学特性的聚合物稳定的微孔液晶通过双模板制造》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-08-03
  • 软质材料的自组织纳米和微结构受到相当大的关注,因为它们大部分是由于其柔软的性质而具有刺激响应性。在这方面,液晶(LC)的拓扑缺陷不仅对于自组装胶体和分子,而且对于诸如光学涡旋产生的电光应用是有希望的。然而,目前在大面积上周期性地形成大量缺陷的自下而上的方法很少。非常希望开发更有效的高通量和低成本制造技术。这里,通过光聚合来稳定由方形阵列的拓扑缺陷组成的微细晶体结构。聚合物网络形成在向列型液晶(NLC)的自组织模板的结构上,这反映了其他不可聚合的NLC分子,其保持其对电场和温度的响应。特定局部区域的光固化用于创建可重复的自组织缺陷的可设计模板。此外,高度稀释的聚合物网络(≈0.1重量%的单体)表现出图案的即时开关切换。除了模式的稳定之外,这些结果表明,纳入自组织NLC图案为各向异性聚合物网络提供了一些独特和非常规的应用。

    ——文章发布于2017年7月31日

相关报告
  • 《住友化学研发新型液晶聚合物 升级高速连接器性能》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-08-26
    • 据外媒报道,随着人们对物联网(IoT)、自动驾驶汽车、5G蜂窝网络、智能城市和视频流媒体服务等产品的兴趣不断增加,以及越来越多人能够使用到此类产品,让更多的数据,以更高的速度传输至较小的有线和无线设备也变得更加重要且具有挑战性。 为了确保数据能够高质量、高速传输,所有电子设备中用于互连的组件都需要被仔细检查,以尽量减少信号的丢失/衰减、失真和干扰,因此需要制造商升级高速连接器的性能,而日本住友化学株式会社(Sumitomo Chemical Advanced Technologies)研发了三种新型高性能液晶聚合物(LCP),以满足此类领域内日益增长的需求。 设备小型化(连接器小型化和超小型化,同时要求在更薄的壁材上实现更高的机械性能),加上使用更高密度的互连设备,减少了印刷电路板(PCB)的空间,以及增加了复杂性。同时,市场需要传输速度得到大幅提升,从每秒3 Gtb、6至比特、50,甚至到100 Gtb。在如此近的距离内放置如此多的高速、高频互连设备会增加传输负载,同时也会增加串扰,从而增加了对介电常数和损耗因子较低的连接器材料的需求,要知道如果自动驾驶汽车之间发生串扰,则可能会造成致命事故。而且网站被黑客入侵的报道也告诉我们,在不影响信号传输速度的情况下,保护数据的完整性非常必要。此外,在更薄的连接器上实现更快的处理速度以及更高密度的线路,会导致热管理问题。为了防止数据传输瓶颈问题,制造商还需要继续升级连接器的性能,以确保数据传输更可靠、更清晰。 因此,住友化学研发了三种专为高速连接器设计的新型SumikaSuper E6205L复合物,可用于汽车信息娱乐系统的底板和连接器。该复合物介电常数较低,非常适用于需要较高数据传输速度的连接器。但是,对于同时需要较低介电常数和较低损耗因数的连接器来说,SumikaSuper SR1205L可能能够更好地满足此类连接器的几何形状和设计需求。对于高速数字和无线设备来说,电磁干扰(EMI)会导致信号质量下降,也是一个严重的问题,而第三种复合物SumikaSuper SZ6911EM经过专门设计,能够屏蔽EMI,而且还包含铁磁粒子,能够将入射电磁波转化为热能,由热管理系统将热能排出。 LCP是一种聚合物,能够生产出热塑性塑料部件,而且此类部件会具备独特的加工特性和极高的性能,因此由于具有高耐热性、良好的流动性,可实现减重或减少壁材,通常能够替代金属、陶瓷和其他塑料。大多数商用LCP是芳香族聚酯,具有高热和高机械性能、固有的阻燃性、良好的耐候性、优良的电气性能、抗应力开裂能力强以及具备化学惰性,非常适合用于电子和电子元件(包括光纤、PCB、芯片载体、连接器(传统、射频和光纤)以及其他表面装配部件)、微机电系统(MEMS)、汽车应用程序(包括点火组件和传输系统、灯座、泵组件、线圈管以及传感器)、打印机/复印机/传真机组件、炊具以及用于化学加工过程的部件(包括泵、仪表和阀门)等。
  • 《探索 | 研究人员通过将微光学器件3D打印到光纤上来制造稳定的混合激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-12-15
    • 研究人员首次表明,3D打印的基于聚合物的微光学器件可以承受激光内部产生的热量和功率水平。这一进步使廉价、紧凑和稳定的激光源成为可能,这些激光源可用于各种应用,包括用于自动驾驶汽车的激光雷达系统。 “通过使用3D打印直接在激光器内部使用的玻璃纤维上制造高质量的微光学器件,我们显着减小了激光器的尺寸,”德国斯图加特大学第四物理研究所的研究团队负责人Simon Angstenberger说。“这是这种3D打印光学器件在现实世界激光器中的首次实现,突出了它们的高损伤阈值和稳定性。 在《光学快报》杂志上,研究人员描述了他们如何将微尺度光学器件直接打印到光纤上,以紧凑的方式将光纤和激光晶体组合在单个激光振荡器内。所得到的混合激光器在 1063.4nm处的输出功率超过20 mW时表现出稳定的工作,最大输出功率为37 mW。 新型激光器结合了光纤激光器的紧凑性、坚固性和低成本,以及晶体基固态激光器的优点,晶体固态激光器可以具有广泛的特性,例如不同的功率和颜色。 “到目前为止,3D打印光学器件主要用于内窥镜检查等低功耗应用,”Angstenberger说。“例如,将它们用于高功率应用的能力可能对光刻和激光打标有用。我们表明,这些打印在光纤上的3D微光学器件可用于将大量光聚焦到单个点,这对于医疗应用非常有用。