《探索 | 研究人员通过将微光学器件3D打印到光纤上来制造稳定的混合激光器》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-12-15
  • 研究人员首次表明,3D打印的基于聚合物的微光学器件可以承受激光内部产生的热量和功率水平。这一进步使廉价、紧凑和稳定的激光源成为可能,这些激光源可用于各种应用,包括用于自动驾驶汽车的激光雷达系统。

    “通过使用3D打印直接在激光器内部使用的玻璃纤维上制造高质量的微光学器件,我们显着减小了激光器的尺寸,”德国斯图加特大学第四物理研究所的研究团队负责人Simon Angstenberger说。“这是这种3D打印光学器件在现实世界激光器中的首次实现,突出了它们的高损伤阈值和稳定性。

    在《光学快报》杂志上,研究人员描述了他们如何将微尺度光学器件直接打印到光纤上,以紧凑的方式将光纤和激光晶体组合在单个激光振荡器内。所得到的混合激光器在 1063.4nm处的输出功率超过20 mW时表现出稳定的工作,最大输出功率为37 mW。

    新型激光器结合了光纤激光器的紧凑性、坚固性和低成本,以及晶体基固态激光器的优点,晶体固态激光器可以具有广泛的特性,例如不同的功率和颜色。

    “到目前为止,3D打印光学器件主要用于内窥镜检查等低功耗应用,”Angstenberger说。“例如,将它们用于高功率应用的能力可能对光刻和激光打标有用。我们表明,这些打印在光纤上的3D微光学器件可用于将大量光聚焦到单个点,这对于医疗应用非常有用。

相关报告
  • 《突破 | 利用3D激光打印在光纤末端制造微米级光学器件》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-10-24
    • 来自以色列Soreq核研究中心的研究人员近期成功开发出一种新型3D激光打印技术,可直接在光纤末端制造高质量、复杂的聚合物光学器件,能够以一种低成本的方式来为各种应用设计不同的光束。而且这种微型光学器件的尺寸甚至比人类头发丝的直径还要小。 以色列索瑞克核研究中心(Soreq Nuclear Research Center in Israel)的研究团队负责人Shlomi Lightman表示:“包括通信、互联网在内的许多应用都是基于光纤技术。当光从光纤中出来时,一般会使用大型光学元件将其传输到下一个位置。而我们的方法则是通过将布线过程集成到光纤本身,最大限度地减少这一过程所需的尺寸和成本。” 图1 3D打印的复杂聚合物光学器件的扫描电子显微镜图像 另外值得注意的是,整个微型光学器件的制造过程花了仅仅不到五分钟。而且光纤和这种微型光学器件加起来的的成本不到100美元,大约是具有类似功能的标准显微镜物镜成本的十分之一。 Shlomi Lightman表示:“直接从光纤产生贝塞尔光束的能力,可以用于粒子操作或光纤集成受激发射损耗(STED)显微镜,这是一种产生超分辨率图像的技术。我们的制造方法还可以通过在镜片上打印智能微结构,将普通镜片升级为更高质量的智能镜片。” 为了制造这种微型光学器件,研究人员使用了一种叫做3D直接激光打印的技术。它使用飞秒脉冲激光束在光敏光学材料中产生双光子吸收。只有发生双光子吸收的微小材料会变为固体,这提供了一种创建高分辨率3D结构的方法。 虽然3D直接激光打印技术已经应用了很长时间,但是在光纤尖端制作如此小的光学器件时,依旧很难获得正确的比例并对准。于是,研究人员通过进行高度精确的2D和3D模拟,克服了这个障碍。除此之外,他们还需要仔细考虑如何将光学元件相互集成,然后将其与光纤的纤芯对齐。 在经过模拟和精心规划后,研究人员使用商业3D直接激光写入系统和光敏聚合物,在单模光纤末端打印出了直径为60微米、高度为110微米的微型光学器件。它包括用于光线准直的抛物面透镜和用于扭曲光线的螺旋轴棱镜。因此可以使从光纤射出的光变成扭曲的贝塞尔光束。 为了分析上述所制作出器件的质量,研究人员设计了一个光学测量系统,来捕获从改性光纤传输的整形光束。他们在光束中观察到非常低的衍射,这意味着它可应用于STED显微镜和粒子操作等应用。 图2 用于分析整形光束性能的光学测量系统 他们还发现他们还发现,激光功率如果达到接近10 MW/cm2就会损坏制作的微光学器件。也就是说,虽然聚合物比玻璃更容易受到高功率的热损伤,但由聚合物制成的该器件仍然可以用于产生相对较高的激光功率。 如今,研究人员已经证明了使用这种直接3D激光打印方法可以创建精确的多元素微光学系统,他们正在尝试使用含有低比例聚合物的混合光敏材料进行试实验。与聚合物材料相比,这种材料可以生产出质量更高的光学器件,而且还具有保质期长,耐热性高的优势。
  • 《探索 | 从有序到无序态的微腔复杂激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-07-08
    • 天津航海仪器研究所和电子科技大学、深圳大学的研究人员合作概述了微腔复杂激光器的产生、调控及前沿应用进展。他们从微腔结构无序度渐增的视角出发,系统性地概述了各种类型的微腔复杂激光器,并主要介绍了无序微腔激光器的历史发展、激光特性、调控方法和在不同学科的应用场景,最后对微腔复杂激光器的发展趋势进行了深入讨论。 典型的激光器由三个基本元素组成:泵源、放大受激辐射的增益介质以及产生光学共振的腔体结构。当激光器的腔体尺寸接近微米或亚微米级时,它就成为当前学术界的研究热点之一:微腔激光器,其能在小体积内实现显著的光与物质相互作用。将微腔与复杂系统相结合,例如引入不规则或无序的腔体边界,亦或将复杂、无序的工作介质引入微腔,都会增加激光输出的自由度,无序腔体的物理不可克隆特性带来激光参数的多维调控方法,并可以拓展其应用潜力。相关成果以“Microcavity complex lasers:from order to disorder”为题,以特邀综述的形式在线发表于Annalen Der Physik。 微腔复杂激光器的研究体系 随机微腔激光器的不同系统 本文首次从不同腔体维度的角度对随机微腔激光器进行分类。这种区分不仅突出了随机微腔激光在不同维度上的独特输出特性,也阐明了随机微腔的尺寸差异在各种调控和应用领域的优势。其中三维固态微腔通常具有较小的模体积,从而实现更强的光物质相互作用。由于其三维封闭结构,光场可以在三个维度上高度局域化,通常具有高品质因子(Q因子)。这些特性使其适用于高精度传感、光子存储、量子信息处理等先进技术领域。 而开放的二维薄膜系统是构建无序平面结构的理想平台,薄膜系统可以作为具有集成增益和散射的二维无序介质平面,积极参与随机激光的生成。且“平面波导效应”使激光的耦合和收集更加容易。随着腔体维度进一步降低,将反馈和增益介质集成到一维波导中,可以抑制径向光散射,同时增强轴向光的共振和耦合,这种集成方式最终提高了激光产生和耦合的效率。 随机微腔激光器的调控特性 传统激光器的多种指标,如相干性、阈值、输出方向和偏振特性等,都是衡量激光器输出性能的关键标准。与具有固定对称腔体的传统激光器相比,随机微腔激光器在参数调控方面提供了更大的灵活性,体现在包括时域、光谱域和空域等多个维度,突显了随机微腔激光的多维可控性。 例如,研究人员通过优化泵浦参数、调整散射强度和改变增益介质的发光效率来调节随机激光的阈值。且随机激光的输出模式本质上是无序的,表现为低空间相干性(无散斑)和低时间相干性(具有大量纵模),与通常仅有单一输出模式的传统激光器相比,随机激光的低相干性为研究模式调制提供了众多可控自由度。目前,学术界广泛采用的方法是通过泵浦自适应调整来实现随机激光的定向输出、单一光谱模式及其对应空间模式的选择输出。此外,随机激光的方向性与散射路径密切相关,通过优化微腔载体、优化泵浦形状以及利用外场控制内部介质等方式,可以有效减少随机激光器的全向发射缺陷。 随机微腔激光器的应用特性 低空间相干性、模式随机性和对环境敏感特性等为随机微腔激光器的应用提供了许多有利因素。随着随机激光的模式控制和方向调控问题的解决,这种独特的光源越来越多地应用于成像、医学诊断、传感、信息通信等领域。 作为微纳尺度的无序微腔激光器,随机微腔激光器对环境变化非常敏感,其参数特性可以响应各种监测外部环境的敏感指标,如温度、湿度、pH值、液体浓度、折射率等,为实现高灵敏度的传感应用创造了一个优越的平台。 在成像领域,理想的光源应具有高光谱密度、强定向输出和低空间相干性,以防止干涉散斑效应。研究人员们通过在钙钛矿、生物膜、液晶散射体和细胞组织等载体中均验证了随机激光在无散斑成像中的优势。在医学诊断中,随机微腔激光可以携带来自生物宿主的散射信息,成功应用于检测各种生物组织,为无创医疗诊断提供了便利。 总结与展望 本综述介绍了自然界和人工环境中广泛存在的无序结构中包含的复杂激光现象,定义了微腔复杂激光的概念,梳理了不同类型的微腔复杂激光,并重点介绍了随机微腔激光的发展、调控及应用。未来,对无序微腔结构和复杂激光生成机制的系统分析将变得更加完善。随着材料科学和纳米技术的不断进步,可预期将制造出更加精细和功能化的无序微腔结构,在推动基础研究和实际应用方面具有巨大潜力。