《住友化学研发新型液晶聚合物 升级高速连接器性能》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-08-26
  • 据外媒报道,随着人们对物联网(IoT)、自动驾驶汽车、5G蜂窝网络、智能城市和视频流媒体服务等产品的兴趣不断增加,以及越来越多人能够使用到此类产品,让更多的数据,以更高的速度传输至较小的有线和无线设备也变得更加重要且具有挑战性。

    为了确保数据能够高质量、高速传输,所有电子设备中用于互连的组件都需要被仔细检查,以尽量减少信号的丢失/衰减、失真和干扰,因此需要制造商升级高速连接器的性能,而日本住友化学株式会社(Sumitomo Chemical Advanced Technologies)研发了三种新型高性能液晶聚合物(LCP),以满足此类领域内日益增长的需求。

    设备小型化(连接器小型化和超小型化,同时要求在更薄的壁材上实现更高的机械性能),加上使用更高密度的互连设备,减少了印刷电路板(PCB)的空间,以及增加了复杂性。同时,市场需要传输速度得到大幅提升,从每秒3 Gtb、6至比特、50,甚至到100 Gtb。在如此近的距离内放置如此多的高速、高频互连设备会增加传输负载,同时也会增加串扰,从而增加了对介电常数和损耗因子较低的连接器材料的需求,要知道如果自动驾驶汽车之间发生串扰,则可能会造成致命事故。而且网站被黑客入侵的报道也告诉我们,在不影响信号传输速度的情况下,保护数据的完整性非常必要。此外,在更薄的连接器上实现更快的处理速度以及更高密度的线路,会导致热管理问题。为了防止数据传输瓶颈问题,制造商还需要继续升级连接器的性能,以确保数据传输更可靠、更清晰。

    因此,住友化学研发了三种专为高速连接器设计的新型SumikaSuper E6205L复合物,可用于汽车信息娱乐系统的底板和连接器。该复合物介电常数较低,非常适用于需要较高数据传输速度的连接器。但是,对于同时需要较低介电常数和较低损耗因数的连接器来说,SumikaSuper SR1205L可能能够更好地满足此类连接器的几何形状和设计需求。对于高速数字和无线设备来说,电磁干扰(EMI)会导致信号质量下降,也是一个严重的问题,而第三种复合物SumikaSuper SZ6911EM经过专门设计,能够屏蔽EMI,而且还包含铁磁粒子,能够将入射电磁波转化为热能,由热管理系统将热能排出。

    LCP是一种聚合物,能够生产出热塑性塑料部件,而且此类部件会具备独特的加工特性和极高的性能,因此由于具有高耐热性、良好的流动性,可实现减重或减少壁材,通常能够替代金属、陶瓷和其他塑料。大多数商用LCP是芳香族聚酯,具有高热和高机械性能、固有的阻燃性、良好的耐候性、优良的电气性能、抗应力开裂能力强以及具备化学惰性,非常适合用于电子和电子元件(包括光纤、PCB、芯片载体、连接器(传统、射频和光纤)以及其他表面装配部件)、微机电系统(MEMS)、汽车应用程序(包括点火组件和传输系统、灯座、泵组件、线圈管以及传感器)、打印机/复印机/传真机组件、炊具以及用于化学加工过程的部件(包括泵、仪表和阀门)等。

相关报告
  • 《《自然》:分层液晶聚合物技术提高3D打印性能》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-20
    • 2018年9月20日,《Nature》(《自然》)上发布了一篇文章,对3D打印技术制造高强度轻质结构有了全新的认识:利用分层液晶聚合物结构的3D打印控制,提高性能。 南极熊乐观认为,如果这种技术被完善改进,那么FDM 3D打印机的市场应用将可进入普通工业应用,市场不可限量。 来自苏黎世联邦理工学院的研究人员使用廉价的桌面FDM打印机和聚合物开发了一种3D打印轻质结构方法。 他们第一次能够使用单一可回收材料打印物体,其机械性能超过所有其他的可打印聚合物,甚至可以与纤维增强复合材料竞争。 (a)由刚性单体组成的芳族无规共聚酯能够形成棒状聚合物链 (b)熔融状态下的刚性聚合物棒能够沿着同一方向调整对齐 (c)局部对齐的向列区可以在聚合物中形成准各向同性区域 (d)加热的喷嘴附近在进行挤出操作时能够利用拉伸力和剪切力对聚合物进行重整 (e)材料被喷嘴挤出后就会立即失去自身的取向 (f)沉积材料在一定高度的表面能够再次调整对齐并且形成核壳结构 (g-h)打印结束后,链末端可以通过热处理进行化学交联增加分子量,从而增强结构之间的应力传递能力 当需要坚硬的轻质材料时,例如在飞机,车辆和生物医学植入物中,通常使用纤维增强聚合物结构。尽管它们具有非常高的刚度和强度,但是这种轻质材料需要能量和劳动密集的制造工艺。此外,制品是易碎的,易于损坏并且难以成形和再循环。 研究人员的灵感来自于自然界中可以找到的两种材料 - 蜘蛛丝和木材。蜘蛛丝通过丝蛋白沿纤维方向的高度分子排列获得其无与伦比的机械性能。通过使用液晶聚合物(LCP)作为FDM原料,研究人员能够再现这种结构。这种设计原理的灵感来自于木材等,它们拥有根据生长和适应环境的应力线排列纤维的能力。 由此产生的3D打印LCP结构展示了分层结构,复杂的几何形状和前所未有的刚度和韧性。 研究人员表示,事实上,它们比最先进的3D打印聚合物更强大。 “将3D打印的自上而下的成型自由与自下而上的分子控制结合,在聚合物取向上的能力开启了自由设计和实现结构的可能性,而不受当前典型制造工艺的限制。” 该技术有望成为需要高性能轻质材料的若干结构,生物医学和能量收集应用的改变者。 由于这项研究是使用现成的聚合物和商用台式打印机进行的,研究人员希望更广泛的增材制造和开源社区能够采用这种新材料并进行数字化设计,并制造出来自LCP的强大而复杂的轻质物体。
  • 《《Nature》:聚合物升级循环的概念和未来的发展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-04-02
    • 塑料是构成现代工业和人们生活的最基本的材料之一。是世界上最大的合成消费品,2018 年的年产量达到 3.59 亿吨。是包装、建筑材料、电子、生物医学设备和能源储存等多种应用的首选材料。塑料制品之所以成为人们最为重视的材料,是因为塑料制品拥有重量轻、成本低、易加工、性能多样等巨大的优势。尽管如此,塑料废物的报废管理并没有以与其生产成正比的速度发展。塑料制品的不当处理所产生的塑料废物的积累对环境产生了诸多负面影响。因此,制定减少、再利用和回收塑料废物的战略是一项紧迫的科学和社会挑战,不仅要减少污染环境的废弃塑料的数量,还要减少因制造原始塑料而造成的温室气体排放。 当前最为常用的回收塑料制品的方式是对废旧塑料进行焚烧。这种方式是最快实现塑料中储存能量回收的方式,但是从长远来看不会创造经济价值或减轻材料的资源消耗,同时释放二氧化碳和其他有害气体,进一步加剧气候变化。虽然西方国家在过去30年前就开始实施大规模的塑料再利用战略,但即便到了2019年,欧洲从城市固体废物中收集的塑料中也只有 32.5%,美国的这一数据更为可怜的8.7%被回收。而在其他发展中国家,塑料制品的有效回收利用率一般低于5%。而受限于回收技术,回收的塑料中由于分选错误和各种污染物的存在,使得回收塑料的机械性能大幅下降。因此,消费后塑料的机械回收通常会导致所谓的降级回收材料的质量和/或实用性下降。相对于传统的机械回收所面临的这种困境,化学回收正在成为一种新兴的回收方式。该方法可以将废弃的塑料被转化为高纯度单体,以重新聚合成相同的材料。然而,使用现有技术,只有一小部分商品塑料可以以节能和经济高效的方式进行化学回收。 机械或化学回收的塑料作为一种起始原料,比石油合成的同系物更昂贵。另一种方法是将塑料废物视为化学原料,从而将其定位在价值链的起点而不是终点。在这样的框架下,消费后的塑料垃圾成为合成材料或分子的低成本和丰富的起始材料。寻找将消费后塑料转化为具有附加经济价值的材料的解决方案仍然是一项巨大的挑战,需要回答复杂且相互关联的化学、经济和环境问题。这一新框架有时被成为升级循环(upcycling)。 在这一综述中,来自西班牙巴斯克大学的Haritz Sardon、美国北卡罗来纳大学教堂山分校的Frank A. Leibfarth以及比利时根特大学的Steven De Meester团队根据获得的产品类型(聚合物、分子和材料)总结讨论了聚合物升级循环的概念和未来的发展。该总结以“Critical advances and future opportunities in upcycling commodity polymers”为题发表在《Nature》上。 【升级循环的概念和定义】 Gunter Pauli 最早于1999年在同名书中首次使用“升级再造”一词来指代任何将副产品、不需要的或废品转化为更高价值的新材料的过程。升级再造方法寻求将废塑料重新利用成具有更高“价值”的产品。该方法创造的价值相比单纯的经济价值更加广泛。在这一框架中,可持续替代的概念最为重要。可替代性意味着升级后的产品需要在一定程度上与替代产品的功能等效,以用于特定的最终用途,但不排除产生具有未知潜力的替代产品。量化可持续的可替代性需要考虑替代材料的制造与它所替代的材料相比的能源效率和环境影响,以及升级后的材料被回收和/或升级的潜力。 【聚合物到聚合物转换】 聚合物到聚合物的升级循环导致废弃塑料直接转化为成分不同的聚合物,这种聚合物比母材更具经济价值。聚合物到聚合物的升级循环具有两种方式:通过合成新的构筑基元将塑料废物转化为新的聚合物;以及塑料废料的后功能化以获得具有增强性能的新材料。 解聚以及重新聚合策略:实现第一种方式的策略主要是将聚合物解聚成不同的构件,以便随后聚合成不同的材料。例如,解聚研究最深入的例子是聚对苯二甲酸乙二醇酯 (PET) 的酯基反应,它提供了内在的逆合成处理,可在再聚合成不同聚合物(包括嵌段共聚酯、聚氨酯涂料或聚异氰脲酸酯)之前酯交换成低聚物片段泡沫。最近,通过解聚和随后与生物衍生的酯和酸的聚合,PET也被重新用于玻璃纤维增强塑料 (FRP)。结合生物来源的单体和回收的 PET,优化的材料在机械性能(存储模量)方面优于比较标准的石油基 FRP,同时消耗更少的能量和排放更少的温室气体。 将塑料废物升级为新聚合物的另一种选择是利用酶和微生物的独特能力来介导解聚和随后的再聚合过程,已经有报道将废弃的 PET、聚苯乙烯和混合塑料废物通过生物介导的方式转化为聚羟基链烷酸酯 (PHA)。PHAs 特别有吸引力,因为它们易于生物降解用于可持续包装材料。 功能化策略:聚合物功能化,也称为聚合后改性,是区分原生塑料性能的常用工业方法。与化学回收相比,聚合物官能化是乙烯基聚合物的一种有吸引力的方法,因为它们的解聚具有高焓阻隔和缺乏固有的功能。对于一些乙烯基聚合物来说,由于其特殊的稳定性,导致常规的化学修饰难以对其进行有效的官能化,因此,C-H 功能化已成为一种有吸引力的方法,可以在提高商品材料价值的同时保留母材的有益属性。最近的研究也集中于通过开发创造性的催化剂实现对聚烯烃的官能化,以安装羟基、黄原酸酯或其他极性官能团而不会伴随断链。同时,合理的官能团化也进一步增强了聚合物的性能,这些聚合物表现出增强的抗蠕变性和应力松弛。 【聚合物到小分子的转化】 将废弃塑料升级为小分子可以为合成化学品提供经济且可持续的替代品,否则这些化学品需要耗费大量劳动力或生产成本过高。以塑料废料为丰富的起始材料,通过选择性解聚以合成化学品为目标的化学转化具有大批量生产的潜力。 聚合物到单体的转变:聚酯,尤其是 PET,已被广泛研究作为解聚成小分子的基材,这主要是由于存在化学不稳定的酯基团以及已经存在的用于这种塑料的更好的收集和分类系统。虽然使用消费后塑料制备单体是一种有吸引力的方法,但与从石化资源制备类似分子相比,其优势尚不系统清楚。此外,这些新兴材料的市场大多未开发,与大量的塑料垃圾相比,它们目前的替代潜力仍然相对较小。未来的研究应通过生命周期评估 (LCA) 和技术经济分析 (TEA) 研究来确定这些方法的环境和经济优势。此外,还必须考虑开发能够耐受消费后废物流中的杂质(添加剂、染料、错误分类的聚合物和多层产品)的化学物质。 聚合物到化学品的转变:化学品是聚合物废料升级再造的另一个有吸引力的目标。聚酯和聚碳酸酯的过渡金属催化氢化和氢化反应产生多功能小分子,这些小分子在化学工业中已作为溶剂和试剂开发了市场。研究表明,这些后过渡金属的官能团耐受性使其适用于不纯的消费后废物流,显示出在与来自城市固体废物的废物相关的条件下使用它们的前景。 聚合物到添加剂的转变:即使是原始的聚合物材料在实际应用中也常常表现出不足的物理性能,并且必须将添加剂加入聚合物中以提高其可加工性和适用性。 【聚合物到材料的转化】 商品聚合物及其混合物可以作为一种受人关注的其实材料,用于生产纳米材料、能量存储以及各类复合材料等。该文中中,作者讨论了两种将聚合物转化为功能材料的策略:热处理以产生碳基材料和增容以实现聚合物共混物。与从头合成的材料相比,实现具有相似甚至更高性能的材料有可能减少石化资源的使用,并将废物转移回市场。 聚合物到纳米材料:碳氢化合物占非纤维商品塑料的 64%以上,将其转化为用于能源生产和储存的碳基纳米材料是一种具有更高经济价值的先进材料的有吸引力的方法。 聚合物到共混相容剂的转变:混合塑料废物的增值对于任何回收过程,无论是机械的还是化学的都是一个巨大的挑战。在这种情况下,非常需要一种从塑料废物混合物中获得额外价值的策略。一种有希望的选择是共混相容性,它降低了不同聚合物相之间的界面张力,并产生了代表两种材料协同组合的特性。 推进塑料可持续应用需要解决多方面的挑战,具有相当的复杂性。本文详细介绍了聚合物升级循环的概念和应用。在本文中,作者建议将升级循环重点放在从头合成产品的可持续替代上。这种替代可以通过考虑三个标准来指导:环境影响、工业相关性和经济价值。将这些原则应用于最近的研究,可以得出关于聚合物升级循环现状的三个广泛结论: 首先,以指导原则对该领域的现状进行基准测试表明,聚合物升级循环还处于起步阶段,在适合广泛实施之前面临相当大的挑战; 第二个关键发展领域包括在研究过程开始的时候整合材料性能、可持续性指标(LCA 和 TEA)、材料流动分析 (MFA) 和升级产品的市场容量等方面的内容; 第三,在技术开发过程中需要考虑升级后产品的报废情况。理想情况下,升级回收不仅可以延长塑料的使用寿命,还可以添加化学功能,使塑料更易于回收。 塑料仍然是保护食品、净化水、储存或产生能量、减少感染和制造高性能材料的最佳材料。鉴于它们在全球经济中的重要作用,需要制定一个全面且可持续的计划对达到使用寿命的塑料进行相关管理和回收。持续创新,重点是利用塑料废料生产因化学改性而具有高价值和高可回收性的材料,这是一个雄心勃勃的目标,将在向更可持续的塑料经济转变中发挥重要作用。