《Science: 蓝细菌生物钟的运行》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-03-20
  • Ten years ago, researchers discovered that the biological clock in cyanobacteria consists of only three protein components: KaiA, KaiB and KaiC. These are the building blocks -- the gears, springs and balances -- of an ingenious system resembling a precision Swiss timepiece. In 2005, Japanese scientists published an article in Science showing that a solution of these three components in a test tube could run a 24-hour cycle for days when a bit of energy was added. However, the scientists were not able to uncover the exact operation of the system, despite its relative simplicity.

    William Faulkner

    How could the scientists resolve the working of the individual pieces? "In the end, the trick to understand the ticking biological clock in cyanobacteria was to literally make time stop," tells research leader Albert Heck from Utrecht University. "Or as William Faulkner, Nobel Prize Laureate in Literature said: 'Only when the clock stops does time come to life.' Faulkner spoke taking a pause in the constant haste of life. That was also the trick here. We slowed the biological clock by running it in the fridge for a week. In the literal sense we have frozen the time."

    New combination

    In addition to stopping time, the researchers applied a new combination of cutting-edge research techniques. With one technique, they were able to determine how often each of the three protein complexes -- KaiA, KaiB and KaiC -- assembled or disassembled in a single 24-hour cycle. This taught them which collections of protein components -- combinations of gears, springs and balances -- determine the daily rhythm.

    Zooming in

    They then stopped the clock at specific moments by reducing the temperature. This allowed them to use a variety of techniques to zoom in in great detail on the structure of the collection of protein components at that moment -- the position of the gears, springs and balances. In so doing, they identified the two structures that are vital to understanding how the clock works. The researchers could then derive how the wheels turn by determining the transitions from one structure to another. This produced a model that shows exactly how only three protein components form a precision timepiece that operates on a 24-hour cycle.

    "Even though the biological clock of cyanobacteria is very old in terms of geological history, we can still learn a lot from the system today," says Heck. Just a few years ago researchers discovered a similar process in our red blood cells. "Cyanobacteria are the first organisms that have produced oxygen. Oxygen enrichment was the foundation for today's life. With the results of this study, we are learning about the biological primal mechanisms of life, but we can pursue specific aspects directly in clinical research," Heck summarizes.

  • 原文来源:https://www.sciencedaily.com/releases/2017/03/170316141004.htm
相关报告
  • 《利用蓝细菌生产可降解塑料》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2021-03-08
    • 利用蓝细菌生产可降解塑料 德国蒂宾根大学的研究人员在最近的Microbial Cell Factories和PNAS上发表的几项研究中,介绍了他们成功地改变了蓝细菌的代谢通路,生产出了具有良好生物降解特性的有前途的生物塑料替代品——PHB。该方法有望在工业上大量使用,与对环境有害的石油基塑料竞争。 蓝细菌,又称微藻或蓝藻,是地球上最不起眼但功能最强大的细菌之一。研究者发现有一种蓝细菌(Synechocystis sp. PCC 6803)可以产生多羟基丁酸酯(poly-hydroxy-butyrate,PHB),一种天然形式的塑料。PHB的使用方式与塑料聚丙烯类似,但PHB在环境中可以快速降解,其降解产物无污染,是有前景的环境友好材料。 通常情况下,蓝细菌产生PHB的数量很小。研究小组成功地明确了细菌的生产PHB的关键路径和限制因素,通过去除相应的阻遏蛋白(调节蛋白PIRC),并进一步优化遗传回路(过表达基因PHAA和PHAB),使得细菌产生的PHB产量极大增加,可以占细胞总质量的80%以上,最终产生的聚合物由高度规整的纯PHB组成。研究者将继续优化细菌的碳利用效率使其生产规模进一步增加,该研究有望彻底改变塑料生产方式。 吴晓燕 编译自https://phys.org/news/2021-02-cyanobacteria-revolutionize-plastic-industry.html 原文链接:https://www.pnas.org/content/118/6/e2019988118 https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-020-01491-1           原文标题:The novel PII-interactor PirC identifies phosphoglycerate mutase as key control point of carbon storage metabolism in cyanobacteria;                      Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC
  • 《应用蓝细菌模式菌株研究光合膜天然结构取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-07-23
    • 光合作用是地球上最重要的生物能量转化过程之一,通过光合膜上光合复合物(光系统1 PSI、光系统2 PSII、细胞色素b6f复合体Cytb6f、ATP合成酶等)间的电子传递将光能转化为化学能。长期以来,人们对光合复合物的结构和功能进行了大量研究,获得了多种光合复合物单独的原子结构,对它们的功能也有了较深入的理解。然而,我们对这些复合物在天然类囊体膜上的结构状态及协作关系知之甚少,它们之间如何通过动态协作实现能量的传递及调控目前尚不清楚。 海洋试点国家实验室海洋生物学与生物技术功能实验室张玉忠教授团队同英国利物浦大学刘鲁宁教授团队等合作,利用高分辨率原子力显微镜技术,以蓝细菌模式菌株Synechococcus elongatus PCC 7942为研究材料,对其光合膜——类囊体膜进行了高分辨率成像,在纳米水平上展示了类囊体膜上光合复合物的天然结构及相互结合方式,并解释了类囊体膜结构和功能的光适应调节机制。 研究发现,高光下蓝细菌Synechococcus elongatus PCC 7942的类囊体膜上大量表达和组装叶绿素结合蛋白IsiA,并与PSI结合形成IsiA−PSI超分子复合物。与单颗粒电镜分析得到的相对均质的结构不同,原子力显微镜技术展示了天然类囊体膜上IsiA-PSI超分子复合物的结构多样性。PSI三聚体、二聚体、单体能够与IsiA单环、双环、三环或者多环结合,表明IsiA与PSI之间的相互结合具有很大的灵活性。 首次观察到了PSI的腔面结构特征,而且能够有效的分辨类囊体膜上PSI、PSII及Cytb6f复合物结构,准确地获取它们在膜上的空间分布信息。该研究观察到了PSII二聚体的平行成列排布,周围的PSI与PSII二聚体的之间的空间关系比较紧密,暗示了天然类囊体膜上可能存在PSII−PSI超分子复合物。PSII及Cytb6f二聚体穿插于PSI复合物中间,它们之间近距离相互作用形成了PSII−Cytb6f−PSI结构簇,有助于加快光合作用线性电子传递。通过进一步分析发现,PSI复合物与Cytb6f复合物之间存在多种不同的结合方式。 研究还发现PSI与NAD(P)H脱氢酶复合体NDH-1以及ATP合成酶之间也存在紧密的相互作用,而且它们之间的空间结合方式也具有多样性。PSI与其他复合物间的相互合作是实现并优化光合作用线性电子传递、环式电子传递以及光能吸收转化的结构基础。 对近生理状态下的蓝细菌类囊体膜结构的认知不仅可以加深我们对蓝细菌、真核藻类以及高等植物的光合装置的生理功能及环境适应的理解,并为利用合成生物学制造高效的人工光合膜和光能生物转化系统等研究提供重要的理论基础。 该项研究成果刊载于2020年7月13日Nature Plants(《自然-植物》)杂志 。论文由海洋试点国家实验室、山东大学、英国利物浦大学、中国海洋大学、英国玛丽女王学院和河南大学等单位相关学者合作完成,该研究得到了国家自然科学基金重点项目、科技部重点研发计划等项目的资助。 相关论文信息:Nature Plants, 2020, 6: 869–882. DOI: 10.1038/s41477-020-0694-3。 https://www.nature.com/articles/s41477-020-0694-3