《研究发现皂苷合成途径关键酶》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 陈方
  • 发布时间:2021-03-09
  • 研究发现皂苷合成途径关键酶
    三萜类皂苷是重要的医药原料,由一个或多个糖基结合在三萜苷元上,被用于制造可的松、睾丸素、黄体酮和口服避孕药等二十几种甾体激素,也可用于制取洗涤剂、乳化剂、发泡剂、防腐剂等。许多植物都生产皂苷,但其生产路径尚不清楚。
    2020年11月16日Nature Communication报道,日本大阪大学等机构的研究团队合作突破性地发现了皂苷合成中糖基化环节的重要细节,并在酵母中成功构建了生产甘草皂苷的工程化生物合成途径,为以皂素为原料的高价值产品的商业化生产铺平了道路。
    之前普遍认为是UDP依赖性糖基转移酶(UDP-dependent glycosyltransferase,UGT)催化三萜苷元的糖基化,但UGT催化甘草皂苷和各种大豆皂苷C-3位的保守葡萄糖醛酸部分转移的作用尚未确定。此次,研究者突破性地发现纤维素合酶超家族衍生的糖基转移酶(cellulose synthase superfamily-derived glycosyltransferase,CSyGT)能催化三萜苷元的3-O-葡萄糖醛酸糖基化。研究者通过三种豆科植物(甘草、大豆和日本莲)的基因共表达分析,揭示了CSyGTs在皂苷生物合成中的作用,研究者还在酿酒酵母体内对CSyGTs功能进行验证。研究发现,CSyGT突变体不积累大豆皂苷,但在内质网中异位表达的CSyGTs成功地补充大豆皂苷生物合成。这一发现颠覆了以往的认知,填补了以往知识的空白。研究者还在酵母中成功构建生产了甘草皂苷的途径,开辟了通过大规模培养工程酵母细胞来工业生产有价值的皂苷的新途径。
    吴晓燕 编译自https://phys.org/news/2020-11-newly-enzyme-valuable-bioactive-saponins.html
    原文链接:https://www.nature.com/articles/s41467-020-19399-0
                                原文标题:A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis

相关报告
  • 《研究发现植物草酸代谢途径关键酶影响玉米营养品质》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-09-20
    • 9月10日,The Plant Cell 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所巫永睿研究组题为Maize Oxalyl-CoA Decarboxylase1 Degrades Oxalate and Affects the Seed Metabolome and Nutritional Quality 的研究论文。该研究克隆和功能解析了玉米草酸降解途径中的关键酶——草酰辅酶A脱羧酶,揭示了草酸代谢参与籽粒储藏物质积累和营养品质形成的分子机理。 草酸是最简单的二元酸,在植物体内的含量非常高。草酸在调控金属胁迫、离子平衡和昆虫防御等方面起积极作用。然而,过量草酸不仅会影响植物自身发育,也会影响包括钙元素在内的多种矿物金属矿物元素的利用;人体从食物中摄入草酸过多会和钙形成草酸钙,诱发形成肾结石。有报道显示,植物体内存在草酸合成和降解途径,其中一条降解途径由四种酶共同作用,分别为草酰辅酶A合成酶、草酰辅酶A脱羧酶、甲酰辅酶A水解酶和甲酸脱氢酶。草酰辅酶A合成酶可以催化草酸形成草酰辅酶A,接着草酰辅酶A在脱羧酶的作用下形成甲酰辅酶A。草酰辅酶A合成酶在多种植物中均被发现,然而却未有草酰辅酶A脱羧酶的报道,在农作物玉米中,草酸的降解代谢途径还未知,草酸与玉米籽粒发育、营养物质存储和品质调控的关系也不清楚。 在此项研究中,巫永睿研究组克隆了玉米草酰辅酶A脱羧酶(Oxalyl-CoA Decarboxylase1,OCD1)基因,该基因突变以后籽粒胚乳呈现出粉质的表型,同时籽粒的储存物质合成和粒重也发生下降。由于没有商业化的草酰辅酶A脱羧酶底物草酰辅酶A,研究人员尝试了多种方法,合成了较高纯度的草酰辅酶A。体外和体内的酶活实验证实草酰辅酶A脱羧酶可以降解草酰辅酶A产生甲酰辅酶A和二氧化碳。同时,研究人员还发现早先克隆的玉米经典高赖氨酸突变体基因opaque7(o7)编码草酰辅酶A合成酶,并证明O7可以催化草酸形成草酰辅酶A。另外,靶向和非靶向代谢组学分析发现,玉米草酰辅酶A基因突变后籽粒胚乳的能量代谢、糖类、氨基酸以及激素含量均受到显着影响。该项研究阐明了玉米草酸代谢的前两步反应,并揭示了草酸降解途径与籽粒胚乳发育、代谢和营养品质的关系,为将来遗传改良草酸含量较高的蔬菜(如菠菜)等提供了候选基因和分子机制。 该工作主要由巫永睿研究组副研究员杨俊和博士生付苗苗合作完成。博士生冀晨、黄永财参与了相关工作。研究工作得到科技部、国家自然科学基金、中国科学院等的资助。
  • 《微生物所发现真菌合成黄酮柚皮素的新途径》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   黄酮是一类主要由植物产生的多酚类化合物,在工业、食品和制药行业应用广泛。柚皮素作为一种平台化合物,是合成黄酮类化合物的关键步骤。在植物和细菌中,以对香豆酸(p-CA)为前体,经对香豆酰辅酶A连接酶(4CL)和III型聚酮合酶查尔酮合酶(CHS)催化生成柚皮素查尔酮,而后在查尔酮异构酶催化或pH改变自发异构化生成柚皮素。真菌中曾报道黄酮类化合物的产生,但其合成酶和途径鲜有报道。   近日,中国科学院微生物研究所尹文兵研究组利用靶向基因组挖掘策略,在植物内生真菌中发现了一个不同于常规途径黄酮柚皮素合成酶。该酶具有独特结构域组成(A-T-KS-AT-DH-KR-ACP-TE),是一个NPRS-PKS杂合酶,被鉴定为FnsA。研究通过异源表达、底物饲喂实验和体外酶促反应,证实了FnsA以游离的芳香酸(对香豆酸和对羟基苯甲酸)为底物,直接催化形成柚皮素。FnsA KS结构域系统进化分析表明,FnsAPKS属于I型PKS,不同于传统的III型PKS(CHS)。   鉴于FnsA催化柚皮素合成的新颖性,科研人员利用fnsA一个酶在酿酒酵母合成柚皮素,并以此基础从头构建了植物黄酮异鼠李素和金合欢素的生物合成途径。该研究证实了FnsA是一种新型的真菌柚皮素合酶,不同于传统的柚皮素合成途径,FnsA能催化对香豆酸或对羟基苯甲酸直接合成柚皮素。该研究通过工程fnsA从头合成植物黄酮异鼠李素和金合欢素,为微生物高效生产黄酮类化合物提供新策略。   相关研究成果以A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院基础前沿科学研究计划“从0到1”原始创新项目、中国科学院战略生物资源计划及中国博士后科学基金的支持。   尹文兵研究组长期致力于次级代谢产物产生的机理和合成调控机制研究,揭示真核微生物次级代谢产物产生的分子机理、生物合成途径和基因调控机制,为新活性化合物的发现提供新技术和新策略。