《芬兰国家技术研究中心(VTT)等机构研究人员对六个国家的十台光学原子钟进行协调比较,为秒的重新定义奠定基础》

  • 编译者: 李晓萌
  • 发布时间:2025-07-27
  • 近日,在一项新的研究中,研究人员通过在六个国家同时运行原子钟及其连接链路,进行了迄今为止最广泛的光学原子钟协调比较。这项跨越数千公里的实验,标志着向秒的重新定义并最终建立全球光学时间尺度迈出了重要一步。

    “原子钟提供的精确时间和频率信号对于许多日常技术至关重要,比如GPS、管理电网以及保持金融交易同步,”英国国家物理实验室(NPL)时间和频率部门负责人Helen

    Margolis表示。“我们的发现有助于提高下一代光学原子钟的性能,从而释放出全新的应用,并推动依赖时间和频率的科学研究。”

    光学原子钟是一种利用激光以可控方式激发原子,使原子在特定能级之间跃迁的原子钟。这些跃迁发生在非常精确的频率上,这些频率就是时钟的“滴答”声。由于这些时钟有多种形式,每种时钟都使用不同的原子来计时,因此要充分发挥这些精密计时器的潜力,就需要在长距离上对它们进行比较。

    该研究于2025年6月12日发表在《Optica》期刊上(DOI:10.1364/OPTICA.561754),一个多机构的研究团队报告了使用十种不同的光学原子钟同时进行的38次比较——或称频率比——的结果。其中四次比较是首次直接进行的,而许多其他的比较也比以往更加精确。

    “这些测量提供了关于光学原子钟仍需进行哪些工作以实现用于国际计时所需的精度和可靠性方面的关键信息,”意大利国家计量研究院(INRiM)的高级研究员Marco Pizzocaro表示。“我们的实验还展示了如何将欧洲各地的光学原子钟连接起来,以最先进的精度测量频率比。这创造了一个分布式的实验室,也可以用于进行基本物理测试,例如寻找暗物质或测试物理学的基本规则。”

    光学原子钟准备好迎接挑战了吗?

    数十年来,全球计时的标准一直基于全球铯微波原子钟信号的平均值。然而,随着光学原子钟的精度和稳定性不断提高,重新定义国际单位制中的“秒”以使用光学原子钟的呼声越来越高。光学原子钟如今比最好的铯原子钟精确约100倍,其计时精度极高,即使经过数十亿年,误差也不会超过一秒。

    然而,将光学原子钟用于国际计时需要比较不同光学原子钟之间的数据,以验证它们是否按预期运行。为了推进这项工作,研究人员在一个由欧盟资助的大型合作项目框架内,进行了六个国家之间光学原子钟的高度协调比较。

    “同时比较多个钟,并使用多种链路技术,比迄今为止主要进行的成对钟比较提供了更多的信息,”芬兰VTT MIKES的高级科学家Thomas Lindvall表示。“通过一组协调的测量,不仅可以检查一致性,还能提供更可信的结果。这些结果有助于确定哪些光学原子钟应该用于重新定义秒。”

    连接这些钟

    为了进行测量,研究人员必须将不同光学原子钟系统的频率输出连接起来。他们采用了两种方法:利用卫星的无线电信号和通过光纤传输的激光光。

    卫星方法使用了卫星导航系统中的GPS信号,该信号可供研究中包含的所有钟使用。然而,由于信号噪声或仪器限制等因素导致的测量不确定性,这种连接技术的精度有限。

    研究人员还使用了定制的光纤链路,这使得测量精度比卫星技术高出100倍。然而,这些稳定、高精度的连接仅在国际比较期间用于连接法国、德国和意大利的钟。此外,在德国和英国(多个钟位于同一研究所内)进行的本地比较中,使用短光纤进一步减少了不确定性。

    研究人员表示,协调十个高性能钟在不同国家的同步运行以及连接这些钟的所有链路,需要提前进行广泛的规划。数据分析也带来了一些挑战。

    “并非所有结果都证实了我们的预期,我们在测量中观察到一些不一致之处,”英国国家物理实验室(NPL)的首席科学家Rachel Godun表示。“然而,同时比较这么多钟,并使用多种技术连接钟,使我们更容易识别问题的根源。”

    实验确定了一些需要进一步工作的领域。例如,为了确认所有钟都按预期运行,必须将测量不确定性降低到与钟本身的精度相匹配的水平。之后需要进行重复测量,以确认可靠运行,从而增强对钟和链路的信心。除此之外,在重新定义“秒”之前,还需要满足其他几个标准,包括证明光学原子钟能够定期且持续地为国际时间尺度做出贡献。

相关报告
  • 《德国联邦物理技术研究院(PTB)研究团队开发的新型光学原子钟在比较测量中达到了创纪录的精度,为“秒”的重新定义奠定基础》

    • 编译者:李晓萌
    • 发布时间:2025-03-26
    • 下一代原子钟以激光频率为基准“滴答”计时,这比目前定义秒的铯原子钟的微波频率快约10万倍。这些光学钟目前仍处于试验阶段,但已经有一些光学钟的精度比现有铯原子钟高出百倍。因此,它们有望在未来成为国际单位制(SI)中秒定义的全球基础。然而,在此之前,这些光学钟需要通过反复测试和全球比较来证明其可靠性。德国联邦物理技术研究院(PTB)是全球领先的机构之一,已经实现了一系列不同类型的光学钟,包括光学单离子钟和光学晶格钟。 近日,一种新型的离子晶体钟也证明了其高精度,其测量时间和频率的潜力比目前实现SI秒的铯原子钟高出1000倍。这种新型离子晶体钟与其他光学钟进行了比较,并创下了新的精度纪录。研究人员在《Physical Review Letters》最新一期中报告了这次测量活动的结果。 在光学原子钟中,原子被激光光照射。当激光的频率完全正确时,原子会改变其量子态。在此过程中,所有外部对原子的影响必须被屏蔽或精确测量。在带有囚禁离子的光学钟中,这一点可以很好地实现。离子可以通过电场在真空中被定位到几纳米的范围内。由于出色的控制和隔离,这种钟非常接近理想的无干扰量子系统。因此,离子钟已经达到了超过小数点后18位的系统性不确定性。如果这样的钟从宇宙大爆炸开始计时,到今天最多只会慢一秒。 目前的离子钟使用单个离子运行。由于其信号较弱,需要在长达两周的时间内进行测量,才能确定这种水平的频率。为了充分发挥其潜力,甚至需要长达3年以上的测量时间。 在新开发的钟中,通过并行化大幅缩短了测量时间:在这种情况下,多个离子被同时困在同一个陷阱中,通常还会结合不同类型的离子。通过它们的相互作用,它们形成了一种新的晶体结构。德国联邦物理技术研究院(PTB)的物理学家Jonas Keller解释说:“这个概念还可以结合不同离子的优势。我们使用铟离子,因为它们具有实现高精度的良好特性。此外,为了高效冷却,晶体中还掺杂了镱离子。” 一个挑战是开发一种离子陷阱,它可以像单个离子一样精确地使用这种空间扩展的晶体作为钟。另一个挑战是开发实验方法,以在晶体内部定位冷却离子。研究小组负责人Tanja Mehlst?ubler的团队用新想法令人印象深刻地解决了这些问题:该钟目前达到了接近小数点后18位的精度。 为了与其他钟系统进行必要的比较,还纳入了PTB的两台光学钟和一台微波钟:一台镱单离子钟、一台锶晶格钟和一台铯喷泉钟。在这种情况下,铟钟与镱钟的比例首次达到了总不确定性低于重新定义秒所需的极限。 该概念承诺了一种具有高稳定性和精度的新一代离子钟。它也适用于其他类型的离子,并为进一步开发全新的钟概念提供了可能性,例如使用量子多体态或级联查询多个集合。 这些工作部分得到了德国研究基金会(DFG)的资助,作为卓越集群QuantumFrontiers和特殊研究领域DQ-mat的一部分。 文章信息: H.?N. Hausser, J. Keller, T. Nordmann, N.?M. Bhatt, J. Kiethe, H. Liu, I.?M. Richter, M. von Boehn, J. Rahm et al. : 115In+-172Yb+ Coulomb Crystal Clock with 2.5 × 10?18 Systematic Uncertainty. Phys. Rev. Lett. 134, 023201. DOI: https://doi.org/10.1103/PhysRevLett.134.023201
  • 《美国国家标准与技术研究院(NIST)发布对新型原子钟NIST-F4原子频率标准的精度评估,将显著提升全球时间基准的稳定性和可靠性》

    • 编译者:张宇
    • 发布时间:2025-05-30
    • 近日,美国国家标准与技术研究院(NIST)的研究人员在《Metrologia》期刊发表了一篇文章(DOI:10.1088/1681-7575/adc7bd),将NIST-F4确立为世界上最精确的计时器之一。NIST已向国际计量局(BIPM)提交了该时钟,申请将其作为主要频率标准予以接受。BIPM是负责监督全球时间的机构。 NIST-F4测量的是铯原子内部一个不变的频率,这是自1967年以来国际上一致同意的定义“秒”的基础。该时钟基于一种“喷泉”设计,这种设计代表了时间计量的最高精度标准。NIST-F4的运行如此稳定,以至于如果它在1亿年前恐龙漫游的时代就开始运行,那么到今天它的时间误差也不会超过1秒。 通过加入由全球仅10个国家运行的类似精英时钟的小型群体,NIST-F4使全球时间的基础更加稳定和安全。与此同时,它还在帮助引导NIST用于保持美国官方时间的时钟。通过无线电和互联网传播的美国官方时间,对于电信和交通系统、金融交易平台、数据中心运营等至关重要。 NIST时间与频率部门主任Liz Donley表示:“NIST-F4改进了时间信号,这些信号每天被使用数十亿次,用途广泛,从校准钟表到确保数千亿美元电子金融交易的准确时间戳。” 一种特殊的时钟 像NIST-F4这样的铯原子喷泉钟是一种原子钟——一种复杂且高精度的设备,能够从原子中提取时间脉冲。这些时钟在我们这个全球互联的社会中发挥着关键作用:它们作为“主要频率标准”,共同校准协调世界时(UTC,即一个使用全球原子钟数据达成共识的时间计量系统,也称为时间尺度)。 像NIST这样的国家计量实验室利用自己的时间尺度来生成和分发UTC的版本;例如,NIST生成的版本称为UTC(NIST)。这些国家时间尺度随后被用于同步我们在日常生活中依赖的时钟和网络。 在喷泉钟中,首先利用激光将数千个铯原子冷却到接近绝对零度。随后,一对激光束轻柔地将原子向上抛起,之后原子会在自身重力作用下下落。 在原子的这段旅程中,它们会两次穿过一个充满微波辐射的小腔室。第一次是在原子上升过程中,微波将原子置于一个量子态,该量子态以一种特殊的频率——铯共振频率——随时间循环,这是一个由自然规律设定的不变常数。 大约一秒钟后,当原子再次下落时,微波与原子之间的第二次相互作用揭示了时钟的微波频率与原子的自然共振频率之间的接近程度。这一测量结果被用来将微波频率调整至原子共振频率。 随后,一个探测器会计算经过微调的微波的9,192,631,770个波周期。计算这些周期所需的时间定义了国际标准的“一秒”。 (这一定义可能会在2030年发生改变,届时各国计划考虑用一种或多种不同的原子元素重新定义“秒”,这些元素被用于所谓的光学钟,其测量时间的精度甚至高于喷泉钟。即便如此,铯原子喷泉钟在时间计量中仍将发挥重要作用,尽管其重要性有所降低。) 历经多年打造的“旅程” 全球正在运行的铯原子喷泉钟还不到20台。与用于互联网数据中心、股票市场和其他私营企业以计秒的商用原子钟不同,几乎每一台喷泉钟都是由像NIST这样的国家计量实验室的科学家建造和运行的。“这是一种非常优美的技术,具有真正的性能优势,但它非常娇贵。”NIST喷泉钟团队的物理学家Greg Hoth表示。 让NIST-F4加入这个精英队伍是一个历经多年的旅程。NIST的科学家们在20世纪90年代末建造了该机构的第一台喷泉钟NIST-F1。NIST-F1运行了超过15年,并被用于执行定期的频率校准。然而,喷泉钟的精密程度有多高,它们就有多脆弱。2016年搬入新大楼后,该时钟不得不经过修复并经过仔细测试,以再次作为主要频率标准运行——这一过程比预期花费的时间更长。 2020年,物理学家Vladislav Gerginov开始研究NIST-F1的频率测量。最终,他、Hoth以及同事们决定从头开始重建时钟的核心部件——微波腔,铯原子就是在这个腔体中被测量的。为了达到必要的精度,他们需要实现5到10微米的公差——大约是人类头发宽度的五分之一。 科学家们增加了新的电加热线圈、磁线圈、光学元件和微波组件,并进行了微调。NIST团队决定将这台新的喷泉钟命名为NIST-F4。(NIST已经建造了另外两台喷泉钟,NIST-F2和NIST-F3,因此NIST-F4是该系列的第四台。) 研究团队花费了数月时间进行测量,以确保NIST-F4不会因压力和温度波动或杂散电场和磁场等因素而受到影响。他们将喷泉钟的滴答声与氢气钟(用于计美国官方时间的主力原子钟)的滴答声进行比较,以确保它们保持稳定且不变的节奏。 “喷泉钟本应是非常单调的,”Hoth表示。 “评估像NIST-F4这样的喷泉钟是一个缓慢的过程,因为我们需要非常谨慎,”Gerginov表示。“在投入使用之前,我们必须对它的一切都了如指掌,”他说,因为时钟信号中的任何误差不仅会破坏美国的时间,还可能破坏全球时间计量基础设施。 近日,NIST团队在《Metrologia》期刊上报告称,NIST-F4的频率测量精度达到了10的16次方(1000万亿)分之2.2——与世界上最好的喷泉钟相当。NIST团队还将时钟数据发送给了国际计量局(BIPM),在那里,一个专家团队正在对其进行检查,之后BIPM将正式认证该时钟为主要频率标准。 Donley表示:“NIST-F4的成功重新确立了NIST在主要频率标准领域的全球领导地位。”“Vladi和Greg凭借他们的聪明才智和技能,恢复了NIST原子喷泉钟的可靠、世界级运行。” NIST-F4和另一台喷泉钟NIST-F3大约90%的时间都在运行,且在任何给定时刻至少有一台时钟在运行。NIST-F4的数据将定期发送给BIPM以校准协调世界时(UTC),而这两台时钟已经在帮助引导NIST时间尺度UTC(NIST)。 Donley表述:“NIST时间尺度已经从喷泉钟的高运行时间和其性能的可靠性中显著受益。”