《美国国家标准与技术研究院(NIST)发布对新型原子钟NIST-F4原子频率标准的精度评估,将显著提升全球时间基准的稳定性和可靠性》

  • 编译者: 张宇
  • 发布时间:2025-05-30
  • 近日,美国国家标准与技术研究院(NIST)的研究人员在《Metrologia》期刊发表了一篇文章(DOI:10.1088/1681-7575/adc7bd),将NIST-F4确立为世界上最精确的计时器之一。NIST已向国际计量局(BIPM)提交了该时钟,申请将其作为主要频率标准予以接受。BIPM是负责监督全球时间的机构。

    NIST-F4测量的是铯原子内部一个不变的频率,这是自1967年以来国际上一致同意的定义“秒”的基础。该时钟基于一种“喷泉”设计,这种设计代表了时间计量的最高精度标准。NIST-F4的运行如此稳定,以至于如果它在1亿年前恐龙漫游的时代就开始运行,那么到今天它的时间误差也不会超过1秒。

    通过加入由全球仅10个国家运行的类似精英时钟的小型群体,NIST-F4使全球时间的基础更加稳定和安全。与此同时,它还在帮助引导NIST用于保持美国官方时间的时钟。通过无线电和互联网传播的美国官方时间,对于电信和交通系统、金融交易平台、数据中心运营等至关重要。

    NIST时间与频率部门主任Liz Donley表示:“NIST-F4改进了时间信号,这些信号每天被使用数十亿次,用途广泛,从校准钟表到确保数千亿美元电子金融交易的准确时间戳。”

    一种特殊的时钟

    像NIST-F4这样的铯原子喷泉钟是一种原子钟——一种复杂且高精度的设备,能够从原子中提取时间脉冲。这些时钟在我们这个全球互联的社会中发挥着关键作用:它们作为“主要频率标准”,共同校准协调世界时(UTC,即一个使用全球原子钟数据达成共识的时间计量系统,也称为时间尺度)。

    像NIST这样的国家计量实验室利用自己的时间尺度来生成和分发UTC的版本;例如,NIST生成的版本称为UTC(NIST)。这些国家时间尺度随后被用于同步我们在日常生活中依赖的时钟和网络。

    在喷泉钟中,首先利用激光将数千个铯原子冷却到接近绝对零度。随后,一对激光束轻柔地将原子向上抛起,之后原子会在自身重力作用下下落。

    在原子的这段旅程中,它们会两次穿过一个充满微波辐射的小腔室。第一次是在原子上升过程中,微波将原子置于一个量子态,该量子态以一种特殊的频率——铯共振频率——随时间循环,这是一个由自然规律设定的不变常数。

    大约一秒钟后,当原子再次下落时,微波与原子之间的第二次相互作用揭示了时钟的微波频率与原子的自然共振频率之间的接近程度。这一测量结果被用来将微波频率调整至原子共振频率。

    随后,一个探测器会计算经过微调的微波的9,192,631,770个波周期。计算这些周期所需的时间定义了国际标准的“一秒”。

    (这一定义可能会在2030年发生改变,届时各国计划考虑用一种或多种不同的原子元素重新定义“秒”,这些元素被用于所谓的光学钟,其测量时间的精度甚至高于喷泉钟。即便如此,铯原子喷泉钟在时间计量中仍将发挥重要作用,尽管其重要性有所降低。)

    历经多年打造的“旅程”

    全球正在运行的铯原子喷泉钟还不到20台。与用于互联网数据中心、股票市场和其他私营企业以计秒的商用原子钟不同,几乎每一台喷泉钟都是由像NIST这样的国家计量实验室的科学家建造和运行的。“这是一种非常优美的技术,具有真正的性能优势,但它非常娇贵。”NIST喷泉钟团队的物理学家Greg Hoth表示。

    让NIST-F4加入这个精英队伍是一个历经多年的旅程。NIST的科学家们在20世纪90年代末建造了该机构的第一台喷泉钟NIST-F1。NIST-F1运行了超过15年,并被用于执行定期的频率校准。然而,喷泉钟的精密程度有多高,它们就有多脆弱。2016年搬入新大楼后,该时钟不得不经过修复并经过仔细测试,以再次作为主要频率标准运行——这一过程比预期花费的时间更长。

    2020年,物理学家Vladislav Gerginov开始研究NIST-F1的频率测量。最终,他、Hoth以及同事们决定从头开始重建时钟的核心部件——微波腔,铯原子就是在这个腔体中被测量的。为了达到必要的精度,他们需要实现5到10微米的公差——大约是人类头发宽度的五分之一。

    科学家们增加了新的电加热线圈、磁线圈、光学元件和微波组件,并进行了微调。NIST团队决定将这台新的喷泉钟命名为NIST-F4。(NIST已经建造了另外两台喷泉钟,NIST-F2和NIST-F3,因此NIST-F4是该系列的第四台。)

    研究团队花费了数月时间进行测量,以确保NIST-F4不会因压力和温度波动或杂散电场和磁场等因素而受到影响。他们将喷泉钟的滴答声与氢气钟(用于计美国官方时间的主力原子钟)的滴答声进行比较,以确保它们保持稳定且不变的节奏。

    “喷泉钟本应是非常单调的,”Hoth表示。

    “评估像NIST-F4这样的喷泉钟是一个缓慢的过程,因为我们需要非常谨慎,”Gerginov表示。“在投入使用之前,我们必须对它的一切都了如指掌,”他说,因为时钟信号中的任何误差不仅会破坏美国的时间,还可能破坏全球时间计量基础设施。

    近日,NIST团队在《Metrologia》期刊上报告称,NIST-F4的频率测量精度达到了10的16次方(1000万亿)分之2.2——与世界上最好的喷泉钟相当。NIST团队还将时钟数据发送给了国际计量局(BIPM),在那里,一个专家团队正在对其进行检查,之后BIPM将正式认证该时钟为主要频率标准。

    Donley表示:“NIST-F4的成功重新确立了NIST在主要频率标准领域的全球领导地位。”“Vladi和Greg凭借他们的聪明才智和技能,恢复了NIST原子喷泉钟的可靠、世界级运行。”

    NIST-F4和另一台喷泉钟NIST-F3大约90%的时间都在运行,且在任何给定时刻至少有一台时钟在运行。NIST-F4的数据将定期发送给BIPM以校准协调世界时(UTC),而这两台时钟已经在帮助引导NIST时间尺度UTC(NIST)。

    Donley表述:“NIST时间尺度已经从喷泉钟的高运行时间和其性能的可靠性中显著受益。”

相关报告
  • 《美国国家标准与技术研究院(NIST)研发的离子钟创下全球最精确时钟的新纪录》

    • 编译者:张宇
    • 发布时间:2025-08-18
    • 近日,美国国家标准与技术研究院(NIST)的研究人员制造出迄今为止最精准的原子钟,其精度可达到小数点后19位。这种“量子逻辑时钟”在过去20年中一直处于持续开发阶段,它利用量子计算技术,将一个带电的铝原子(离子)与一个镁离子配对。这一新成果有助于国际上重新定义秒,使其精度远高于以往,从而推动新的科学研究和技术进步。 作为世界上最精准时钟新纪录的保持者,NIST的研究人员改进了基于囚禁铝离子的原子钟计时方式。作为最新一代光学原子钟的一部分,其计时精度可达到小数点后19位。 光钟通常从两个层面进行评估—准确性(时钟接近理想“真实”时间的程度,也称为系统不确定性)和稳定性(时钟测量时间的效率,与统计不确定性相关)。这一新的精度纪录是铝离子钟20年持续改进的结果。其精度达到世界领先水平,具体来说比之前的纪录高出41%,这款新型时钟的稳定性也比其他任何离子钟高出2.6倍左右。达到这些水平意味着对时钟的每一个细节都进行了精心的改进,从激光到离子陷阱再到真空腔。 “能够参与制造有史以来最精准的时钟,这令人兴奋不已。”美国国家标准与技术研究院(NIST)的研究员、该论文的第一作者梅森·马歇尔(Mason Marshall)表示,“在NIST,我们得以开展这些长期的精密测量计划,这些计划能够推动物理学领域的发展并提高我们对周围世界的认知。” 铝离子是一种异常出色的时钟材料,其具有极其稳定且高频的“滴答”频率。美国国家标准与技术研究院(NIST)铝离子钟项目负责人戴维·休姆(David Hume)表示,虽然铯原子目前为科学定义“秒”提供了计量依据,但实际上铝离子的滴答频率比铯原子更稳定。此外,铝离子对温度和磁场等环境条件的敏感性也更低。 但铝离子有点“害羞”,Marshall解释说。铝很难用激光探测和冷却,而这两者都是原子钟运行的必要技术。因此,研究小组将铝离子与镁配对。镁虽然没有铝那样出色的滴答特性,但很容易用激光控制。“这种离子态的'伙伴系统'被称为量子逻辑光谱学,”该项目的研究生 威拉·阿瑟-多尔施克(Willa Arthur-Dworschack)说。镁离子冷却铝离子,使其减慢速度。它还会与它的铝伙伴同步运动,所以可以通过镁离子的运动状态来表征离子钟,使其成为“量子逻辑”时钟。即便有了这种协同作用,仍有许多物理效应需要进行特征描述,该项目的另一位研究生丹尼尔·罗德里格斯·卡斯蒂略(Daniel Rodriguez Castillo)表示。 “这是一个庞大而复杂的挑战,因为时钟设计的每一个细节都会影响时钟整体的性能,”Rodriguez Castillo 表示。 其中的一个挑战是用于囚禁离子的陷阱的设计,它会使离子发生微小的运动,这种运动被称为过度微动,从而降低时钟的精度。这种过度的微动会干扰离子的滴答频率。离子阱两侧的电荷不平衡会产生额外的磁场,从而扰乱离子。研究人员重新设计了离子陷阱,将其放在较厚的金刚石晶片上,并改变了电极上的金属涂层,以修复电场的不平衡。该团队还增加了金属涂层的厚度,以降低电阻。通过这一系列的改进措施,使离子阱能够更加稳定的减缓离子的运动,让它们不受干扰地“滴答作响”。 离子阱赖以运行的真空环境也存在隐患。Marshall说,氢气会从传统真空腔的钢制主体中逸散出来。微量的氢气与离子发生碰撞,也会干扰时钟的运行。这限制了实验在离子需要重新加载之前能够持续的时间。研究人员于是又重新设计了真空腔,并用钛金属讲其重建,从而将背景氢气的影响降低了150倍。这意味着他们的实验可以连续几天不用重新加载离子阱,而不是每30分钟就要重新加载一次。 实验团队还需要考虑一个关键因素:用一台更稳定的激光器来探测离子并记录它们的滴答频率。2019年版的时钟必须运行数周,才能平均出由其激光器引起的量子涨落——离子能量状态的临时随机变化。为了缩短这一周期,该团队求助于NIST的核心人物叶军,他在JILA(NIST和科罗拉多大学博尔德分校的联合研究所)的实验室拥有世界上最稳定的激光器之一。叶军的锶晶格钟Strontium 1号始终保持着这一领域的精度记录。 这是整个团队努力的结果。利用街道下的光纤链路,叶军在JILA的团队将超稳定激光束发送了3.6公里(略多于2英里)到塔拉·福蒂埃(Tara Fortier)在NIST的实验室中的频率梳。作为“光尺”的频梳使铝离子钟组能够将其激光器与叶军的超稳定激光器进行比较。这一过程使得叶军实验室的激光器能够将其稳定性传递到铝离子钟的激光器上。通过这一改进,研究人员能够将离子探测时间延长至整整1秒,而他们之前的记录为150毫秒。这提高了时钟的稳定性,将测量到小数点后19位所需的时间从三周缩短到一天半。 凭借这一新记录,铝离子钟为在国际上重新定义秒精度做出了卓越的贡献,从而促进了新的科学发展和技术进步。这些升级还大大改善了其作为量子逻辑测试台的用途,探索了量子物理学中的新概念,并构建了量子技术所需的各种工具,这对于相关领域的研究人员来说是一个令人兴奋的前景。更重要的是,通过将平均时间从几周缩短到几天,这款时钟将成为对地球大地测量学进行新测量和探索标准模型之外的物理学领域的新工具,例如自然界的基本常数,我们发现它并不是固定值而是存在着随环境变化的可能性。 Arthur-Dworschack表示:“借助这一平台,我们有望探索新的时钟架构——比如将时钟中离子的数量进一步增加,甚至将它们纠缠在一起——从而进一步提高我们的测量能力。 该项目的研究成果已发表在《Physical Review Letters》期刊上。(DOI:10.1103/hb3c-dk28)
  • 《美国国家标准与技术研究院(NIST)发布用于太赫兹频率梳测量的超宽带光电子混频器》

    • 编译者:张宇
    • 发布时间:2025-05-30
    • 近日,美国国家标准与技术研究院(NIST)展示了他们研发的用于太赫兹频率梳测量的超宽带光电子混频技术,该技术使用经过改进的高速单向载波(MUTC)光电二极管提供高达500GHz的重复频率的相位相干检测。光电二极管本身的非线性光电子效应使电梳的谐波产生和下混过程具有显著不同的重复频率。具体来说,研究过程中生成了两个25GHz的频率梳,并使用光学滤波器来探索微波、毫米波和太赫兹频率范围内的频率梳光谱分量到基带的相干下混频。光电子混频器出色的噪声抑制性能使毫米波和太赫兹频率梳的相位相干测量成为可能,其测量时间为 τ,而艾伦偏差为 10^-13/τ。NIST进一步研究了转换损耗对反向偏置电压和光电流的依赖程度。实验结果表明,通过在最佳电压和最大可用光电流下运行光电二极管,可以将转换损耗降至最低。这项研究为毫米波和太赫兹频率梳的测量提供了一种解决方案,并有助于实现具有微共振器的完全稳定的频率梳。 该项研究的成果已发表在《Optics Letters》期刊上。(DOI:10.1364/OL.557366)