下一代原子钟以激光频率为基准“滴答”计时,这比目前定义秒的铯原子钟的微波频率快约10万倍。这些光学钟目前仍处于试验阶段,但已经有一些光学钟的精度比现有铯原子钟高出百倍。因此,它们有望在未来成为国际单位制(SI)中秒定义的全球基础。然而,在此之前,这些光学钟需要通过反复测试和全球比较来证明其可靠性。德国联邦物理技术研究院(PTB)是全球领先的机构之一,已经实现了一系列不同类型的光学钟,包括光学单离子钟和光学晶格钟。
近日,一种新型的离子晶体钟也证明了其高精度,其测量时间和频率的潜力比目前实现SI秒的铯原子钟高出1000倍。这种新型离子晶体钟与其他光学钟进行了比较,并创下了新的精度纪录。研究人员在《Physical Review Letters》最新一期中报告了这次测量活动的结果。
在光学原子钟中,原子被激光光照射。当激光的频率完全正确时,原子会改变其量子态。在此过程中,所有外部对原子的影响必须被屏蔽或精确测量。在带有囚禁离子的光学钟中,这一点可以很好地实现。离子可以通过电场在真空中被定位到几纳米的范围内。由于出色的控制和隔离,这种钟非常接近理想的无干扰量子系统。因此,离子钟已经达到了超过小数点后18位的系统性不确定性。如果这样的钟从宇宙大爆炸开始计时,到今天最多只会慢一秒。
目前的离子钟使用单个离子运行。由于其信号较弱,需要在长达两周的时间内进行测量,才能确定这种水平的频率。为了充分发挥其潜力,甚至需要长达3年以上的测量时间。
在新开发的钟中,通过并行化大幅缩短了测量时间:在这种情况下,多个离子被同时困在同一个陷阱中,通常还会结合不同类型的离子。通过它们的相互作用,它们形成了一种新的晶体结构。德国联邦物理技术研究院(PTB)的物理学家Jonas Keller解释说:“这个概念还可以结合不同离子的优势。我们使用铟离子,因为它们具有实现高精度的良好特性。此外,为了高效冷却,晶体中还掺杂了镱离子。”
一个挑战是开发一种离子陷阱,它可以像单个离子一样精确地使用这种空间扩展的晶体作为钟。另一个挑战是开发实验方法,以在晶体内部定位冷却离子。研究小组负责人Tanja Mehlst?ubler的团队用新想法令人印象深刻地解决了这些问题:该钟目前达到了接近小数点后18位的精度。
为了与其他钟系统进行必要的比较,还纳入了PTB的两台光学钟和一台微波钟:一台镱单离子钟、一台锶晶格钟和一台铯喷泉钟。在这种情况下,铟钟与镱钟的比例首次达到了总不确定性低于重新定义秒所需的极限。
该概念承诺了一种具有高稳定性和精度的新一代离子钟。它也适用于其他类型的离子,并为进一步开发全新的钟概念提供了可能性,例如使用量子多体态或级联查询多个集合。
这些工作部分得到了德国研究基金会(DFG)的资助,作为卓越集群QuantumFrontiers和特殊研究领域DQ-mat的一部分。
文章信息:
H.?N. Hausser, J. Keller, T. Nordmann, N.?M. Bhatt, J. Kiethe, H. Liu, I.?M. Richter, M. von Boehn, J. Rahm et al. : 115In+-172Yb+ Coulomb Crystal Clock with 2.5 × 10?18 Systematic Uncertainty. Phys. Rev. Lett. 134, 023201. DOI: https://doi.org/10.1103/PhysRevLett.134.023201