《Nature Genetics:张钊/王露合作揭示逆转座子启动先天免疫系统以长期抵抗外源病毒入侵的新作用》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-11-22
  • 逆转座子几乎存在于所有真核生物的基因组中并且在基因组中的占比极其丰富。就人类而言,逆转座子占据基因组的比例高达38%。逆转座子激活后,其表达的mRNA、蛋白以及反转录生成的cDNA对机体往往是不利的,可潜在的引起神经退行性疾病和癌症;此外,逆转座子转座会引起DNA损伤、基因突变以及基因组不稳定,不仅仅会导致不育还可能驱动衰老进程。所以,研究者往往认为逆转座子激活对生命体是有害的。

    虽然机体已经进化出了非常精细的调控机制去沉默逆转座子的活性,但是逆转座子仍然有可能在生命发育的特定时期或者特定的组织中被激活,并且这种生理条件下的逆转座子激活有可能赋予物种新的生理功能。

    2022年11月18日,美国杜克大学药理学及癌症生物学系张钊实验室联合中国科学院生物化学和细胞生物学研究所(分子细胞科学卓越创新中心)王露实验室,在 Nature Genetics 期刊发表了题为:Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses 的最新研究成果。

    该研究系统性的建立了在体细胞中检测逆转座子转座的工具,实现了在单细胞水平实时跟踪逆转座子的跳跃事件,借此揭秘了特定发育时期中逆转座子的激活可以启动宿主先天免疫系统以长期抵抗外源病毒入侵的重要作用,为研究逆转座子潜在的生理功能提供了新的方向。

    张钊课题组长期以来一直致力于研究逆转座子的跳跃事件,课题组在研究转座子在生殖系统中的调控的同时(Lu Wang et al., Cell, 2018; Sunjing Moon et al., Dev Cell, 2018),也致力于探索其在体细胞中的功能。

    在该研究中,课题组首先以果蝇为模式动物建立了在体细胞中追踪转座子跳跃的新系统。果蝇是变态发育的昆虫,依次经历卵期、幼虫期、蛹期和成虫期。在蛹期,果蝇会进行变态发育(metamorphosis),此期间体细胞组织首先会退化,然后重建新的体细胞组织。有趣的是,此项研究通过实时追踪mdg4逆转座子在体细胞组织发育过程中的活性和跳跃事件,发现mdg4能够特异性的在蛹期激活,并且仅仅在新生的体细胞中发生跳跃。这种生理条件下逆转座子在特定时期的激活和转座预示着mdg4可能对果蝇的发育起到了特定的功能。

    固有的先天免疫系统是一道非常关键的抵抗外源病菌入侵,从而保护机体存活的天然屏障。该系统高度保守的存在于从酵母到植物以及动物中。尽管先天免疫系统不会像获得性免疫系统产生极其高效的免疫记忆力,但是研究表明,先天免疫系统在受到一种病菌感染后会对下一次的病菌感染表现出更好的保护作用。

    在该研究中,结果表明mdg4特异性的在蛹期激活能够通过活化NF-κB 蛋白Relish的抗病毒功能,以启动宿主的先天免疫系统,从而保护成年果蝇抵抗外源病毒入侵。mdg4的激活可以促进Relish的切割和入核效应,从而增强先天免疫系统的相关基因表达。有趣的是,该研究表明仅仅只有蛹期的mdg4激活才可以激活先天免疫系统,以达到长期抵御外源病毒的作用。

    总之,该研究通过实时跟踪逆转座子在体细胞发育过程中的跳跃事件,发现宿主利用特定时期逆转座子的激活而启动先天免疫系统以保护自己抵抗外源病毒的入侵。从进化角度而言,虽然宿主和逆转座子之间的军备竞赛没有停息。但是在行使某些生理功能方面,宿主对逆转座子成功的实现了“敌为我用”。生理条件下逆转座子的激活不但不会对宿主产生有害作用,反而会有利于宿主发挥特定的功能。

    这种现象不仅仅存在于果蝇中,研究发现在人的胚胎发育—8细胞到囊胚—的过程中也存在特定时期的逆转座子激活;这种特定时期逆转座子的激活和功能在进化上可能存在保守性,值得我们深入研究。而转座子研究必将能够在不久的将来给我们带来更多的新的“惊喜”。

    王露和张钊课题组的Lauren Tracy为共同第一作者,王露和张钊为论文共同通讯作者,该研究得到了张钊组的苏为佳博士、杨斧博士、王露组的冯煜以及麻省大学医学院的Neal Silverman博士的大力支持。

  • 原文来源:https://news.bioon.com/article/9f63e485149a.html
相关报告
  • 《Nature:揭示细菌中的泛素转移酶启动抗病毒免疫反应机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-22
    • 在一项新的研究中,来自美国科罗拉多大学博尔德分校的研究人员发现当涉及到抵御入侵者时,细菌的运作方式与人类细胞极为相似,它们拥有开启和关闭免疫途径所需的相同核心分子机制。他们还揭示了这种共享的古老分子机制---一群称为泛素转移酶(泛素转移酶)的酶---是如何运作的。他们说,更好地了解并有可能重新编程这种分子机制,最终可能为治疗一系列人类疾病(从类风湿性关节炎和克罗恩病等自身免疫性疾病到帕金森病等神经退行性疾病)的新方法铺平道路。相关研究结果于2023年2月8日在线发表在Nature期刊上,论文标题为“An E1–E2 fusion protein primes antiviral immune signalling in bacteria”。 论文共同通讯作者、科罗拉多大学博尔德分校生物化学系助理教授Aaron Whiteley说,“这项新的研究表明,我们与细菌没有什么不同。通过研究这些细菌过程,我们可以学到很多关于人体如何发挥作用的知识。” 下一个CRISPR? 这项新的研究并不是第一次展示细菌可以教给人类的东西。越来越多的证据表明人类免疫系统的一部分可能起源于细菌,而且在植物和动物王国中,进化产生了更复杂的细菌抗病毒工具。 2020年,美国加利福尼亚大学伯克利分校生物化学家Jennifer Doudna因CRISPR获得了诺贝尔奖,这是一种基因编辑工具。细菌利用CRISPR来对抗噬菌体。围绕CRISPR的讨论点燃了科学界对蛋白和酶在抗噬菌体免疫反应中所发挥的作用的新兴趣。 Whiteley说,“在过去的三到五年里,人们已意识到它不会随着CRISPR而结束。它的潜力是如此之大。” 进化史中的缺失环节 在这项新的研究中,Whiteley和论文共同第一作者Jane Coffin Childs与加州大学圣地亚哥分校的生物化学家合作,进一步了解一种名为cGAS(环状GMP-AMP合酶)的蛋白,人们以前已发现它既存在于人类中,也以一种更简单的形式存在于细菌中。 在细菌和人类中,当细胞感觉到病毒入侵时,cGAS对于启动下游防御至关重要。但是在细菌中是什么在调节这个过程,以前是不知道的。 Whiteley团队使用一种称为低温电镜的超高分辨率技术以及其他遗传和生物化学实验,近距离观察了cGAS在细菌中的进化前身的结构,并发现了细菌用来帮助cGAS保护细胞免受病毒攻击的额外蛋白。具体来说,他们发现细菌利用一种精简的泛素转移酶“一体化版本”来修饰它们的cGAS,其中泛素转移酶是一个复杂的酶集合,在人类中控制免疫信号转导和其他关键的细胞过程。 Ledvina说,由于细菌比人类细胞更容易进行基因操作和研究,这一发现为研究工作开辟了一个新的机会。“细菌中的泛素转移酶是我们了解这些蛋白进化史的一个缺失环节。” 对蛋白进行编辑 这项新的研究还揭示了这种分子机制是如何起作用的,确定了两种关键成分---称为Cap2(CD-NTase-associated protein 2)和Cap3(CD-NTase-associated protein 2)的蛋白---分别作为cGAS反应的开启开关和关闭开关。 Whiteley解释说,除了在免疫反应中发挥关键作用外,泛素在人类中还可以作为一种细胞垃圾的标记,引导多余或旧的蛋白被分解和破坏。当这个系统由于突变而失灵时,蛋白就会堆积起来,帕金森病等疾病就会发生。 这些作者强调,还需要进行更多的研究,但这一发现打开了令人兴奋的科学大门。就像科学家们将古老的细菌防御系统CRISPR改编成可以剪除DNA突变的剪刀式生物技术一样,Whiteley相信这种细菌泛素转移酶的一部分---Cap3,即“关闭开关”---最终可能经编程后对缺陷的蛋白进行编辑并治疗人类疾病。 Whiteley说,“我们对泛素转移酶及其进化过程了解得越多,科学界就越有能力在治疗上靶向这些蛋白。这项新的研究提供了非常明确的证据表明我们体内对维持细胞至关重要的分子机制起源于细菌,做着一些非常令人兴奋的事情。” 参考资料: Hannah E. Ledvina et al. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. Nature, 2023, doi:10.1038/s41586-022-05647-4.
  • 《研究揭示 植物免疫系统监控病毒全新机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-12-27
    • 开发植物的抗病基因是防控病虫害最经济也最高效的手段,但植物是如何识别病原微生物、并在此基础上激活自身免疫系统的,一直是植物病理学领域的核心科学问题。近日,《自然》上在线发表的一项研究揭示了植物与病毒间是如何开展抗病“攻防战”的。   在植物细胞的防御体系中,激素信号系统在抵御病毒等病原微生物的侵染中发挥重要作用。激素受体是激素信号启动的关键开关。免疫受体也是植物抗病系统启动的关键开关。南京农业大学植物保护学院教授陶小荣等人在此次研究中发现,当激素受体被攻击,辣椒会迅速启动免疫系统,通过该系统的免疫受体以“瞭望塔”的方式监测敌情,并且进化出一种与激素受体一样的结构,引诱病毒对其发起类似攻击,进而顺利激活免疫通路,歼灭病毒。   “NLR免疫受体是触发植物防御系统的核心开关。”陶小荣表示。在没有病毒的时候,NLR免疫受体这个“开关”处于关闭状态,此时植物的抗病性不启动;当病毒入侵时,NLR免疫受体“开关”就会打开,植物的抗病性就会启动,并引发下游一系列抗病反应。激素介导的抗病是一种基础抗病性,是一种比较弱的抗性。NLR免疫受体蛋白介导的抗病性则是非常强烈持久的抗病性,可以有效地灭除病原菌,在抗病作物的生产应用上具有广阔的前景。   “这项研究清晰地解析了病毒与作物之间的作用机理和植物抗病的机制,为植物免疫学研究提供了新的思路。”中国工程院院士康振生如是评价。