《研究揭示 植物免疫系统监控病毒全新机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-12-27
  • 开发植物的抗病基因是防控病虫害最经济也最高效的手段,但植物是如何识别病原微生物、并在此基础上激活自身免疫系统的,一直是植物病理学领域的核心科学问题。近日,《自然》上在线发表的一项研究揭示了植物与病毒间是如何开展抗病“攻防战”的。

      在植物细胞的防御体系中,激素信号系统在抵御病毒等病原微生物的侵染中发挥重要作用。激素受体是激素信号启动的关键开关。免疫受体也是植物抗病系统启动的关键开关。南京农业大学植物保护学院教授陶小荣等人在此次研究中发现,当激素受体被攻击,辣椒会迅速启动免疫系统,通过该系统的免疫受体以“瞭望塔”的方式监测敌情,并且进化出一种与激素受体一样的结构,引诱病毒对其发起类似攻击,进而顺利激活免疫通路,歼灭病毒。

      “NLR免疫受体是触发植物防御系统的核心开关。”陶小荣表示。在没有病毒的时候,NLR免疫受体这个“开关”处于关闭状态,此时植物的抗病性不启动;当病毒入侵时,NLR免疫受体“开关”就会打开,植物的抗病性就会启动,并引发下游一系列抗病反应。激素介导的抗病是一种基础抗病性,是一种比较弱的抗性。NLR免疫受体蛋白介导的抗病性则是非常强烈持久的抗病性,可以有效地灭除病原菌,在抗病作物的生产应用上具有广阔的前景。

      “这项研究清晰地解析了病毒与作物之间的作用机理和植物抗病的机制,为植物免疫学研究提供了新的思路。”中国工程院院士康振生如是评价。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2022-12/27/content_546638.htm?div=-1
相关报告
  • 《我校学者在Cell杂志合作发文揭示植物维持先天免疫系统稳态的新机制》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-05-18
    • 南湖新闻网讯(通讯员 于晓)近日,我校农业微生物资源发掘与利用全国重点实验固定研究员、湖北洪山实验室于晓教授,德州农工大学生物化学与生物物理系的何平教授和单立波教授团队在Cell(《细胞》)杂志上在线发表了题为“A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity”的研究论文。该研究首次发现PRR蛋白能够保护受损PTI免疫反应的新机制,建立了植物PTI-DTI-ETI不同免疫途径信号交互的新模式。 植物依赖于细胞膜表面的模式识别受体(pattern-recognition receptors, PRRs)识别微生物相关分子模式(MAMPs)或植物自身损伤相关因子(DAMPs),从而激活PTI或DTI免疫反应。胞内的NLR(nucleotide-binding, leucine-rich repeat receptors)受体直接或间接识别病原分泌的效应蛋白(effector),触发ETI免疫反应。植物类受体蛋白激酶BAK1作为共受体,与多种免疫相关PRR形成受体复合物激活PTI,而病原细菌和真菌的多种效应蛋白攻击BAK1以抑制植物PTI。BAK1及其同源蛋白BAK1-LIKE 1(BKK1)/SERK4的双突变体表现出自我免疫和细胞死亡,这表明植物中存在特定机制监控BAK1蛋白的稳态,在感知BAK1受损后启动强烈免疫以补偿受损的PTI。BAK1/SERK4的缺失或受损如何被感知,该自我免疫途径如何被触发激活仍然未知,植物免疫补偿的信号通路和分子机制均有待解析。 该研究通过基于病毒诱导基因沉默的高通量筛选体系,筛选了一系列类受体激酶(RLK)的T-DNA插入突变体,成功鉴定到LRR-RLK BAK TO LIFE 2 (BTL2)的突变体可以完全抑制沉默BAK1/SERK4引起的细胞死亡,同时超表达BTL2诱导植物出现细胞死亡表型,该细胞死亡诱导能力依赖于BTL2的激酶活性。进一步探究BAK1对BTL2的调控机制发现,BAK1直接与BTL2互作,通过磷酸化BTL2第676位点丝氨酸残基进而抑制BTL2的蛋白活性,以维持正常生长的植物稳态。 BTL2与该团队前期报道的钙离子通道蛋白CNGC20相互作用,并且介导CNGC20的N端调控区磷酸化;电生理学实验表明BTL2可直接激活CNGC20的钙离子通道活性。病原菌接种实验表明BTL2并不直接调控对多种病原菌的抗病性和植物的PTI/ETI免疫反应,但是BTL2与植物DAMP分子或(免疫相关细胞因子)PEPs的受体PEPR1/2和SCOOPs的受体MIK2相互作用,在BAK1及其同源蛋白缺失状态下,导致多个植物DTI免疫途径的过度激活,进而通过EDS1-PAD4-ADR1信号模块诱导强烈的免疫反应导致细胞死亡,从而补偿受损的PTI免疫反应。 综上,该研究解决了长期未知的由BAK1/SERK4缺陷引起自我免疫的相关机制,阐明了植物DTI免疫途径对PTI免疫受损的新型保护机制,拓展了对植物多层次免疫反应相互关系的认知的理解,为利用植物先天免疫提高植物抗病性提供了新的视角。 我校微生物资源发掘与利用全国重点实验固定研究员、湖北洪山实验室于晓教授为该论文的第一作者,德州农工大学生物化学与生物物理系的何平教授和单立波教授为该论文的共同通讯作者。华中农业大学植物科学技术学院李博教授和生命科学技术学院薛绍武教授参与了本项研究。 论文链接:https://www.cell.com/cell/fulltext/S0092-8674(23)00423-3
  • 《研究揭示抗病毒感染新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-06-03
    • 最近一项研究揭示了治疗病毒感染和提高抗癌免疫力的潜在治疗策略,相关结果发表在《Cell》杂志上。 在这项研究中,威克森林学校大学的研究者们发现,增强人体生产I型干扰素的水平,能够帮助清除病毒感染。 干扰素是一组信号蛋白,由宿主细胞响应几种病毒的存在而产生和释放。在一个典型的情况下,病毒感染的细胞会释放干扰素,导致附近的细胞加强其抗病毒防御。干扰素还有助于免疫系统对抗癌症,并可能减缓癌细胞的生长。 在这项研究中,作者发现,RIG-I样受体(RLR)介导的干扰素(IFN)生产,这在提升了病毒清除和癌症免疫监视的宿主免疫中发挥了举足轻重的作用。此前研究表明糖酵解是分解葡萄糖以提取细胞代谢能量的第一步,而作者们发现,在RLR激活期间。糖酵解过程受到了抑制,而这种抑制效应是IFN -I产生的关键。利用药理学和遗传学方法,科学家们表明,通过乳酸脱氢酶A(LDHA)失活减少乳酸可以增强I型IFN的产生,从而保护小鼠免受病毒感染。 作者称,I型干扰素(IFN)在宿主防御病毒感染和癌症免疫监视中起着至关重要的作用。对此,作者计划在其他动物模型中进行额外的研究,为潜在的临床试验做准备。