《研究人员首次发现入侵植物对植食性昆虫防御策略演化及生态效应》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-07-03
  •   外来植物与植食性昆虫的互作关系演化,是外来植物成功入侵的重要原因。外来植物进入新生境后,由于逃离了原产地专食性昆虫的取食(天敌逃逸假说),进而增强了对入侵地广食性昆虫的防御(防御转移假说)。植物抵御昆虫的化学防御是有成本的,“昂贵”的组成型防御和“廉价”的诱导型防御存在权衡,并受昆虫取食压力的影响。然而,昆虫取食压力如何驱动入侵植物对广食性昆虫防御策略的演化及其生态效应仍不明确。

      2023年6月30日,河南大学丁建清团队和中国科学院武汉植物园黄伟团队合作在国际生态学期刊Ecology Letters在线发表题为“Trade- offs in non- native plant herbivore defences enhance performance”的研究论文,揭示了昆虫取食压力重塑入侵植物对广食性昆虫的防御策略,将更多的防御资源用于生长,进而促进外来植物入侵。

      研究团队通过大范围的野外调查、12对入侵植物及其近缘本土种的同质园实验、昆虫生测实验、代谢分析和控制实验,探究了入侵植物对广食性昆虫的防御策略演化及其生态效应。野外调查和同质园实验表明,入侵植物的昆虫取食率低于本土植物,且不同入侵植物之间和不同本土植物之间的昆虫取食率存在差异。昆虫生测实验显示,入侵植物的组成防御低于本土植物,而入侵植物的诱导防御高于本土植物;入侵植物的组成防御与昆虫取食压力呈正相关,诱导防御与昆虫取食压力呈负相关;本土植物的组成防御和诱导防御与昆虫取食压力没有相关性。代谢分析发现,总酚类次生代谢物质在调节入侵植物的组成防御和诱导防御过程中发挥重要作用。控制实验进一步证明,昆虫取食压力降低后,入侵植物通过改变对广食性昆虫的防御策略,将更多的防御资源用于生长。以上研究结果揭示了植物增强竞争能力的新的进化机制,并对丰富入侵植物与植食性昆虫互作关系的演化理论具有重要意义。

      河南大学丁建清团队的孙晓副教授为论文第一作者,中国科学院武汉植物园黄伟研究员为论文通讯作者,河南大学丁建清、孙玉梅、曹雪瑶、翟新丛,中国科学院武汉植物园万金龙,以及美国蒙大拿大学Ray Callaway和美国佛罗里达大学S. Luke Flory为共同作者。研究得到国家自然科学基金等项目资助。

  • 原文来源:http://www.whiob.ac.cn/xwdt/kydt/yjjz/202307/t20230702_6802045.html
相关报告
  • 《研究发现植物介导的昆虫关系受昆虫类别和自身密度的交互影响》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-03-01
    • 植食性昆虫通过植物的系统诱导反应产生复杂且多样的相互作用关系。植食性昆虫的种类(物种特异性)和取食危害程度(密度依赖效应)是决定植物系统诱导反应和昆虫互作的重要因素,但目前就其交互作用知之甚少。   中国科学院武汉植物园入侵生态学学科组以入侵植物乌桕(Triadica sebifera)及其两种生物防治昆虫——红胸律点跳甲(Bikasha collaris)和乌桕卷象(Heterapoderopsis bicallosicollis)为研究体系,通过野外调查、室内控制实验和化学物质分析等实验手段,研究了物种特异性和密度依赖效应对植物系统诱导反应和地上-地下昆虫互作的影响。研究发现,地上卷象的取食行为抑制地下跳甲幼虫的存活,并且这种抑制作用随着卷象取食强度的增加而增强;与之相反,地上跳甲成虫在低取食强度下促进其幼虫的存活,而在高取食强度下抑制了其幼虫的存活。此外,研究发现,物种特异性和密度依赖效应共同决定乌桕初生营养与次生防御物质的变化,并且这些变化是地上和地下昆虫相互作用关系变化的内在驱动力。   研究结果深化了人们对植食性昆虫种群动态、群落组成以及多样性维持机制的认识,并为入侵植物生物防治效率的提高提供了新的思路。   本研究得到国家自然科学基金,湖北省自然科学基金和武汉市应用基础前沿计划的资助。相关研究成果以“Species specific plant-mediated effects between herbivores converge at high damage intensity”为题,发表于国际生态学期刊Ecology上。
  • 《研究人员研究植物病毒,找到保护作物新方法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-10-23
    • 诺亚菲利与当地农民在肯尼亚致力于打击导致咖啡叶锈病当另一个致命的植物病害开始在该国的西南角消灭玉米真菌病原体。被感染的植物在它们的叶子上形成了苍白的条纹,然后枯萎并死亡。一些农民当年损失了90%的农作物。总部位于英国的农业和生物科学国际中心(CABI)的植物病理学家Phiri参加了比赛,以确定罪魁祸首。他和他的同事收集了病株的样本,并将它们送到英国约克的食品与环境研究局(现为Fera Science)的植物诊所。研究人员对感染玉米中表达的RNA分子进行了测序,并确定了两种病毒。在流行病的根源。1 这些病毒已经为研究人员所熟知 - 在20世纪下半叶,堪萨斯州的玉米作物遭遇了类似的命运。这种疾病被称为玉米致死性坏死,由甘蔗花叶病毒(SMV),一种通常对玉米无害的常见病毒和玉米褪绿斑驳病毒(MCMV)株的组合引起。MCMV本身对玉米作物造成损害,但与SMV结合使用后,其效果更加恶化。虽然自1988年以来堪萨斯州没有大规模爆发玉米致死性坏死 - 由于耐病玉米品种的轮换 - 2011年病毒袭击肯尼亚时,当地玉米没有防御。到第二年,这种疾病已经感染了77,000公顷肯尼亚农田,估计耗资5200万美元。 不幸的是,玉米致死性坏死几乎不是唯一的;一般而言,植物与人类和其他动物一样容易受到病毒感染。病毒特别危险,因为与细菌和其他病原体不同,它们不能用抗生素或杀虫剂杀死。加拿大魁北克省国家科学研究所(INRS)的病毒学家Jean-FrançoisLaliberté说:“目前,感染的植物并没有太大的作用。”因此,当病毒袭击时,农民常常被迫摧毁农作物,清洁工具和机器,然后从其他地方种植种子。 然而,近年来,科学家们开始寻求创新的保护作物的新方法。例如,在过去30年中开发的遗传修饰技术可以使植物具有防御病毒入侵的能力,同时使作物产量和食品质量不受影响。这些改良植物中的一些现在在食物链中。最近的基因编辑技术正在改进这种方法,允许研究人员对植物的DNA进行精确的改变,以设计更耐药的作物。目前正在实验室和现场试验中对几种此类品种进行测试,少数此类品种正在等待国家监管机构的安全批准。 植物作为病毒工厂 植物病毒的研究历史悠久。事实上,在植物中首先发现了病毒。在19世纪50年代后期,一种毁灭性疾病开始在荷兰的烟草种植园蔓延。当时的科学家们发现,将受感染植物的汁液注入健康的植物中可以传播植物叶子的症状 - 斑点和变色 - 研究人员认为这种疾病必须由细菌引起。然而,19世纪90年代的其他实验表明,传播疾病的传染因子可以通过瓷水过滤器的微小孔隙 - 太小而不允许任何已知细菌通过。1898年,荷兰微生物学家和植物学家Martinus Beijerinck创造了“病毒”一词来描述神秘传染, 即使在科学家在20世纪上半叶将病毒鉴定为蛋白质包裹的核酸之后,关于这些颗粒如何在宿主细胞内作用引起疾病仍然存在许多问题。再次,对植物的研究推动了病毒学的年轻领域。在20世纪50年代,科学家们开始使用电子显微镜来详细观察植物 - 病毒的相互作用,揭示受感染细胞中巨大的细胞重排。“[研究人员]注意到有很多类似于囊泡的结构,”Laliberté说。“在[健康]植物细胞中,我们有叶绿体,细胞核和线粒体,但在受感染的细胞中,我们有新的细胞器。” 随着气候变化,将出现更多的新昆虫,这些昆虫将携带新病毒和新菌株。-Jean-FrançoisLaliberté, 国家科学研究所 30多年后,研究人员发现那些直径约50至350纳米的奇怪囊泡是病毒感染的发源地。现在称为病毒体或病毒工厂,膜结合区室从植物收集资源以复制病毒基因组并产生RNA,其将指导蛋白质的产生和新病毒颗粒的构建,准备感染新宿主。(见下图。)这些工厂生产的生物分子的紧密接近和高浓度构成了一条高效的生产线,Peter Nagy指出,肯塔基大学的病毒学家。例如,“番茄丛生特技病毒可以在24小时内每个细胞产生近百万个后代,”他说。“这是一个令人难以置信的强大过程。” 通过将病毒复制封闭到膜结合区室中,工厂还用于保护病原体免受植物免疫系统的侵害。在复制其基因组(通常是单链RNA)时,植物病毒通常产生互补拷贝以暂时产生双链RNA,这是植物细胞中极不寻常的视觉。“这种双链RNA不存在于植物细胞中,”Nagy说,所以如果不是病毒工厂周围的保护膜,“植物细胞会马上知道这是一种入侵病毒。” 新的病毒基因组,有时被包装成新的蛋白质衣壳,然后通过称为胞间连丝的细胞壁中的小通道被带到相邻细胞。但它需要一点点哄骗,因为这些通道通常允许小分子的转运,而不是蛋白质和RNA的转运。因此,病毒工厂会产生所谓的运动蛋白质,从而触发通道扩大。一些病毒颗粒也能够进入韧皮部,在那里它们有可能被像蚜虫这样的树液喂食昆虫吸食,并被带走以感染其他植物,经常摧毁整个作物田地。 当然,在这种关系中植物不是被动的受害者,并且许多植物已经进化出对病毒感染的遗传抗性。(参见“坚守阵地”,“科学家”,2016年2月。)了解植物如何抵御攻击使科学家在保护作物的竞赛中处于领先地位,使他们能够设计出新的抗性品种。