《微生物所发现杂交稻根系微生物组具有抗性杂种优势》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-12-05
  • JIPB近日在线发表了中国科学院微生物研究所颜永胜研究组题为“Heterosis in root microbiota inhibits growth of soil-borne fungal pathogens in hybrid rice”(https://doi.org/10.1111/jipb.13416)的研究论文。该研究发现杂交稻形成了与亲本显著不同的根系微生物组,某些杂交稻品系的根系微生物组在组成和功能上具有典型的超亲优势特征,且杂交稻根系微生物组杂种优势可从杂交稻传递至与其混栽的常规稻,促进常规稻性状的提升。

    颜永胜研究组通过扩增子测序分析、微生物高通量培养、合成菌群功能鉴定和作用机制解析,对三组杂交稻和它们亲本的根系细菌及真菌微生物组开展研究。发现杂交稻LYP9的细菌及真菌微生物组结构存在显著的超亲优势特征。功能预测表明LYP9根系微生物组在氮、硫、铁等营养利用和减少病原真菌积累等方面显著优于亲本。进一步的人工合成群落功能实验证实LYP9根系来源的细菌群落可显著缓解多种病原真菌对水稻生长的抑制,而它的亲本群落并不具备相应功能。对菌群作用机制的研究发现,LYP9根系来源的合成菌群的菌株有功能叠加效应,通过激活寄主活性氧代谢、生长素合成及转运、细胞壁合成等途径,保护水稻免受病原真菌的危害。有趣的是,LYP9根系微生物组的抗性杂种优势可在混栽植株间传递,提升混栽水稻品种根系微生物组的保护效应。因此该研究揭示了杂交稻根微生物组抗性杂种优势的功能和机制,为杂交稻新品种的培育及田间栽培提供新的视角。

    张梦婷工程师为该论文的第一作者,颜永胜研究员为通讯作者。中国科学院微生物所方荣祥院士、张杰研究员和湖南杂交水稻研究中心赵炳然研究员也参与了该项研究工作。该研究得到了中国科学院先导专项以及国家自然科学基金的支持。

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202212/t20221205_6566278.html
相关报告
  • 《惊奇的发现,一种3合1微生物颠覆了教科书》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-10
    •     对环境相关微生物的研究显示出比以前认为的更大的多样性。硫酸盐还原微生物的物种多样性极高。硫酸盐还原剂现在被发现在总共27门细菌和古细菌中,而不是以前所知的6门。一组研究人员表明,自然界中与环境相关的微生物的生物多样性非常高。这种多样性至少是以前所知的4.5倍。研究人员最近两本杂志,Nature Communications和FEMS Microbiology Reviews.上发表了他们的研究。     尽管许多与气候相关的过程受到微生物的影响,但隐藏的微生物世界往往被忽视,而这些过程往往与细菌和古细菌(“原始细菌”)群体中令人难以置信的物种多样性有关。例如,硫酸盐还原微生物将海洋沉积物中三分之一的有机碳转化为二氧化碳。这会产生有毒的硫化氢。从积极的方面来看,硫氧化微生物很快就把它作为能量来源,使它变得无害。     “这些过程在湖泊、沼泽甚至人类肠道中也发挥着重要作用,以保持自然和健康的平衡,”莱布尼茨研究所(DSMZ)微生物系主任、Technische微生物研究所教授Michael Pester说。一项研究更详细地检查了其中一种新型微生物的代谢,揭示了以前无法实现的多功能性。硫循环的临界平衡硫循环是地球上最重要、最古老的生物地球化学循环之一。同时,它与碳和氮循环密切相关,强调了它的重要性。它主要是由硫酸盐还原和硫氧化微生物驱动的。在全球范围内,硫酸盐还原剂每年转化约三分之一到达海底的有机碳。作为回报,硫氧化剂消耗了海洋沉积物中大约四分之一的氧气。     当这些生态系统变得不平衡时,这些微生物的活动会迅速导致氧气消耗和有毒硫化氢的积累。这导致了“死区”的形成,在那里动物和植物无法再生存。这不仅会造成经济损失,例如渔业,而且还会破坏当地重要的娱乐场所,从而造成社会损害。因此,了解哪些微生物保持硫循环平衡以及它们如何做到这一点是很重要的。 已发表的结果表明,硫酸盐还原微生物的物种多样性至少包括27门(菌株)。在此之前,人们只知道6个门。相比之下,目前已知的动物界有40门,脊椎动物只属于脊索动物这一门。
  • 《微生物所发现真菌合成黄酮柚皮素的新途径》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   黄酮是一类主要由植物产生的多酚类化合物,在工业、食品和制药行业应用广泛。柚皮素作为一种平台化合物,是合成黄酮类化合物的关键步骤。在植物和细菌中,以对香豆酸(p-CA)为前体,经对香豆酰辅酶A连接酶(4CL)和III型聚酮合酶查尔酮合酶(CHS)催化生成柚皮素查尔酮,而后在查尔酮异构酶催化或pH改变自发异构化生成柚皮素。真菌中曾报道黄酮类化合物的产生,但其合成酶和途径鲜有报道。   近日,中国科学院微生物研究所尹文兵研究组利用靶向基因组挖掘策略,在植物内生真菌中发现了一个不同于常规途径黄酮柚皮素合成酶。该酶具有独特结构域组成(A-T-KS-AT-DH-KR-ACP-TE),是一个NPRS-PKS杂合酶,被鉴定为FnsA。研究通过异源表达、底物饲喂实验和体外酶促反应,证实了FnsA以游离的芳香酸(对香豆酸和对羟基苯甲酸)为底物,直接催化形成柚皮素。FnsA KS结构域系统进化分析表明,FnsAPKS属于I型PKS,不同于传统的III型PKS(CHS)。   鉴于FnsA催化柚皮素合成的新颖性,科研人员利用fnsA一个酶在酿酒酵母合成柚皮素,并以此基础从头构建了植物黄酮异鼠李素和金合欢素的生物合成途径。该研究证实了FnsA是一种新型的真菌柚皮素合酶,不同于传统的柚皮素合成途径,FnsA能催化对香豆酸或对羟基苯甲酸直接合成柚皮素。该研究通过工程fnsA从头合成植物黄酮异鼠李素和金合欢素,为微生物高效生产黄酮类化合物提供新策略。   相关研究成果以A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院基础前沿科学研究计划“从0到1”原始创新项目、中国科学院战略生物资源计划及中国博士后科学基金的支持。   尹文兵研究组长期致力于次级代谢产物产生的机理和合成调控机制研究,揭示真核微生物次级代谢产物产生的分子机理、生物合成途径和基因调控机制,为新活性化合物的发现提供新技术和新策略。