《Nature | 盐酸盐受体通道开启及门控机制》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-05-24
  • 2024年5月22日,哥伦比亚大学的研究人员在 Nature 期刊发表了题为Kainate receptor channel opening and gating mechanism的文章。

    盐酸盐受体是嗜电性谷氨酸受体的一个亚类,是介导兴奋性神经传递的四聚体配体门控离子通道。盐酸盐受体在中枢神经系统的发育和功能过程中调节神经元回路和突触可塑性,并与多种神经和精神疾病有关,包括癫痫、抑郁症、精神分裂症、焦虑和自闭症。虽然盐酸盐受体结构域和亚基组合的结构是可用的,但盐酸盐受体门控的机制仍然知之甚少。

    该研究展示了盐酸盐受体GluK2在激动剂谷氨酸和阳性变构调节剂凝集素-豆豆蛋白A和BPAM344存在下的低温电镜结构。豆豆蛋白A和BPAM344分别作为氨基末端和配体结合域之间的间隔剂和配体结合域二聚体界面的稳定剂,抑制了海碱盐受体的脱敏和延长了激活。通道打开涉及所有四个形成孔的M3螺旋的扭结。该结构揭示了盐酸盐受体门控的分子基础,这可以指导神经系统疾病治疗药物的开发

  • 原文来源:https://www.nature.com/articles/s41586-024-07475-0
相关报告
  • 《Nature | μ型阿片受体的动态构象机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-14
    • 2024年4月10日,清华大学陈春来、斯坦福大学Brian K. Kobilka、加州大学洛杉矶分校Matthias Elgeti共同通讯在Nature发表题为Ligand efficacy modulates conformational dynamics of the μ-opioid receptor的文章,深入研究了μ-阿片受体这种重要的G蛋白偶联受体(GPCR)的复杂结构和动力学特性,其在疼痛管理和各种生理过程的调节中发挥着关键作用。 阿片受体是一类存在于人体神经系统中的蛋白质受体,对阿片类药物(如吗啡、哌替啶等)及内源性阿片肽(如内啡肽、外啡肽等)起作用。这些受体主要分布于中枢神经系统(如大脑和脊髓)以及周围神经系统中的神经元上。阿片受体有μ、κ、δ等多种类型。这项研究的重点是了解从拮抗剂到超效激动剂等不同配体的结合如何调节μ-阿片受体(μOR)的构象整合。通过结合包括DEER和smFRET等的尖端技术,研究人员发现了受体构象动力学及其对信号转导的影响的显著细节。其中一个关键发现是识别了TM6的特定构象状态,已知TM6在GPCR激活中起着关键作用。DEER揭示了六种不同构象状态的复杂集合,研究人员将其分为非活性(R1和R2)和活性(R3和R4)状态。重要的是,发现这些状态的相对群体受到结合配体性质的强烈影响,拮抗剂有利于非活性构象,而高效激动剂稳定活性状态。 此外,研究人员证明,受体下游转导子G蛋白和β-arrestin的结合可以进一步调节构象平衡。值得注意的是,G蛋白结合优先稳定R3活性状态,而β-arrestin结合与R3和R4活性状态表现出更混杂的相互作用。这些发现表明,受体的构象动力学在决定不同信号通路的信号偏向方面起着至关重要的作用。smFRET实验提供了对受体构象动力学更深入的了解。通过使用两种不同的荧光团对,研究人员能够捕捉受体内的快速(<100ms)和慢速(>100ms)构象转变。作者发现快速转变是配体依赖性的,FRET峰的位置与结合配体的功效相关。另一方面,缓慢的转变归因于受体的细胞内环2(ICL2)的结构变化,而ICL2对G蛋白的结合和激活至关重要。 研究人员通过检查GDP对μOR-G蛋白复合物的影响,进一步探索了受体的构象动力学和G蛋白偶联之间的相互作用。他们的研究结果表明,高效和超高效激动剂不仅促进了无核苷酸的μOR-G蛋白复合物的形成,而且降低了GDP的亲和力,从而促进了G蛋白的活化。相反,低效力的G蛋白偏向激动剂表现出更稳定的GDP结合的μOR-G蛋白复合物,为其降低的信号功效提供了解释。 总的来说,这项研究代表了整合结构生物学的一项成就,揭示了配体结合调节μ-阿片受体构象动力学的复杂而微妙的方式。通过揭示支配受体激活和信号转导的潜在结构变化,这项工作有可能为开发针对阿片受体系统的更具选择性和更安全的治疗剂提供信息。
  • 《水稻所发现水稻抗旱耐盐生理调控机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:Zhao
    • 发布时间:2017-12-25
    • 近期,中国水稻研究所水稻基因组模块创制创新团队揭示了水稻高亲和钾离子转运蛋白参与水稻抗旱、耐盐的作用机制。相关研究成果发表于《植物科学前沿》和《环境和实验植物学》。 干旱、高盐等环境胁迫显著抑制水稻的正常生长并导致减产,水稻缺钾会引起植株矮缩、茎秆细弱,严重的产生近似火烧状的“铁锈稻”等,水稻缺钾还会进一步降低其对逆境胁迫的耐受性。研究发现OsHAK1(超表达转基因材料)在根系和地上部均受干旱、高盐诱导上调表达;oshak1突变体在营养和生殖生长期均表现对干旱、盐胁迫敏感,而过量表达OsHAK1可以促进活性氧的清除、增强胁迫响应相关基因的表达、提高水稻的抗旱、耐盐性;OsHAK1的表达量与籼稻和粳稻品种间耐盐性的差异成正相关;通过干旱诱导启动子(OsHAK1pro)特异启动根发育相关基因OsRAA1的表达,获得在干旱逆境下根系生长、钾积累、单株产量和抗旱性均显著提高的转基因水稻。研究结果可为培育抗旱、耐盐水稻新品种提供理论基础。 该研究得到国家自然科学基金、中央级公益性科研院所专项资金项目的资助。水稻所陈光博士为论文第一作者,钱前研究员和南京农业大学徐国华教授为共同通讯作者。