《化学所在印刷制备可穿戴传感器研究中取得进展》

  • 来源专题:湿地遥感信息动态监测
  • 发布时间:2016-03-25
  •   随着智能终端的普及,可穿戴电子设备展现出巨大的市场前景;传感器作为可穿戴设备最重要的核心部件,将对其未来功能发展产生重要影响。 随着传感器向微型化、智能化、网络化和多功能化的方向发展,同时测量多个参数的高集成传感器需要制造工艺和分析技术的创新。印刷技术是实现材料图案化的有效方式,但传统的印刷技术制造精度通常在数十微米,而且需要经过感光刻蚀等复杂、易导致环境污染的工艺,大大限制了其在微纳米器件制造领域的应用。

      在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林课题组近年来致力于推动印刷技术的绿色化和功能化发展,在功能纳米材料的可控组装、精细图案化技术、印刷电子以及器件应用方面开展了系统的研究 ( Adv. Mater. 2014, 26, 6950-6958 )。 通过构筑微米尺度的模板结构,实现了对基材表面液膜破裂行为的控制,得到了精确组装的纳米粒子图案 ( Adv. Mater. 2014, 26, 2501-2507); 利用 “咖啡环”现象制备线宽可达5 μm的金属纳米粒子图案( Adv. Mater. 2013, 25, 6714-6718 ); 利用墨水的三相线滑移现象制备了具有特殊三维结构的图案( Adv. Opt. Mater. 2013, 2 , 34-38 ; Adv. Funct. Mater. 2015, 25 , 2237-2242 );通过喷墨打印磁性墨水制备了特殊三维柱状结构( Small 2015 , 11 , 1900-1904 ); 利用软基材喷墨打印制备了微坑及凹槽结构 ( Adv. Funct. Mater. 2015, 25 , 3286-3294 ); 通过喷墨打印技术构筑微米尺度的电极图案作为 “ 模板 ” ,控制纳米材料的组装 ( Adv. Mater . 2015, 27, 3928-3933 ) 等 。

      在以上研究基础上,他们突破传统印刷技术中模板和精度的局限,利用微米柱阵列作为 “ 印版 ” ,与含有纳米颗粒的 “ 油墨 ” 及柔性基材构筑了类似传统印刷过程中 “ 印版、油墨和纸张 ” 的三明治结构。随着溶剂的挥发,气 - 液 - 固三相接触线有序收缩,纳米颗粒在基材上组装形成周期与振幅精确可控的微米乃至纳米尺度的导电曲线阵列,进而得到对微小形变有灵敏电阻响应的传感器(图 1 )。将传感器贴在被监测者的皮肤上进行数据采集与分析,可以实时监测不同环境和心理条件下人体体表微形变的相关生理反应,如复杂表情识别(图 2 ),并有望应用于脉搏监测、心脏监护和远程操控等领域。这种高精度、高灵敏传感器的印刷制造方法突破了传统印刷技术的精度极限,将有力推动印刷制造可穿戴电子和其它微纳米功能器件的发展和应用。该研究成果作为 VIP 文章发表在近日出版的《先进材料》( Adv. Mater. 2016, 28, 1369-1374 ) 上。

相关报告
  • 《中国科学院在印刷制备可穿戴传感器研究中取得进展 高精度识别面部表情》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:王阳
    • 发布时间:2016-03-29
    • 随着智能终端的普及,可穿戴电子设备展现出巨大的市场前景;传感器作为可穿戴设备最重要的核心部件,将对其未来功能发展产生重要影响。随着传感器向微型化、智能化、网络化和多功能化的方向发展,同时测量多个参数的高集成传感器需要制造工艺和分析技术的创新。印刷技术是实现材料图案化的有效方式,但传统的印刷技术制造精度通常在数十微米,而且需要经过感光刻蚀等复杂、易导致环境污染的工艺,大大限制了其在微纳米器件制造领域的应用。 在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林课题组近年来致力于推动印刷技术的绿色化和功能化发展,在功能纳米材料的可控组装、精细图案化技术、印刷电子以及器件应用方面开展了系统的研究(Adv. Mater. 2014, 26, 6950-6958)。 通过构筑微米尺度的模板结构,实现了对基材表面液膜破裂行为的控制,得到了精确组装的纳米粒子图案(Adv. Mater. , 26, 2501-2507);利用“咖啡环”现象制备线宽可达5 μm的金属纳米粒子图案(Adv. Mater. 2013, 25, 6714-6718);利用墨水的三相线滑移现象制备了具有特殊三维结构的图案。在以上研究基础上,他们突破传统印刷技术中模板和精度的局限,利用微米柱阵列作为“印版”,与含有纳米颗粒的“油墨”及柔性基材构筑了类似传统印刷过程中“印版、油墨和纸张”的三明治结构。随着溶剂的挥发,气-液-固三相接触线有序收缩,纳米颗粒在基材上组装形成周期与振幅精确可控的微米乃至纳米尺度的导电曲线阵列,进而得到对微小形变有灵敏电阻响应的传感器。将传感器贴在被监测者的皮肤上进行数据采集与分析,可以实时监测不同环境和心理条件下人体体表微形变的相关生理反应,如复杂表情识别(图2),并有望应用于脉搏监测、心脏监护和远程操控等领域。这种高精度、高灵敏传感器的印刷制造方法突破了传统印刷技术的精度极限,将有力推动印刷制造可穿戴电子和其它微纳米功能器件的发展和应用。该研究成果作为VIP文章发表在近日出版的《先进材料》(Adv. Mater. 2016, 28, 1369-1374)上。
  • 《化学所在可穿戴钙钛矿太阳能电源研究中取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-12-19
    • 可穿戴电子是未来电子元器件研究发展的重要方向,其中电源是核心的组成部分。电源的获取方式和效率影响着未来可穿戴电子的设计与功能。目前,可穿戴电子设备的电源主要为锂离子电池,其固有特性一定程度上限制了可穿戴电子的户外使用性、安全性和人体皮肤贴合性。 近年来,金属有机杂化钙钛矿太阳能电池以其优越的光电转换性能受到广泛关注,为其作为电源应用于可穿戴电子设备提供了可能。然而到目前为止,柔性钙钛矿太阳能电池尚未能实际应用于可穿戴电子设备中。其重要原因之一是钙钛矿材料本身的易脆性,导致大面积电池效率重现性差和无法适合复杂的人体动作。 在科技部、国家自然科学基金委和中国科学院的大力支持下,中国科学院化学研究所绿色印刷重点实验室研究员宋延林课题组科研人员近年来在印刷制备钙钛矿晶体及电池器件方面开展了研究。他们在印刷制备钙钛矿材料方面取得进展,实现了相比传统工艺更环保的喷墨打印制备( J. Mater. Chem. A 2015, 3, 9092-9097 );通过控制打印过程实现了钙钛矿单晶材料的可控生长( Sci. Adv. , 2018, 4, eaat2390 ; Small , 2017, 13, 1603217 )。基于电池器件图案化设计也取得系列进展( Adv. Mater. 2018, 30, 1804454 ; Adv. Energy Mater. , 2018, 8, 1702960. ; Nano Energy , 2018, 46: 203-211 ; Nano Energy , 2018, 51: 556-562 ),并通过纳米组装 - 印刷方式制备蜂巢状纳米支架作为力学缓冲层和光学谐振腔,从而显著提高了柔性钙钛矿太阳能电池的光电转换效率和力学稳定性( Adv. Mater. 2017, 29, 1703236 )。 在上述研究的基础上,他们受自然界中珍珠质结晶机理及结构的启发,引入两亲性弹性结晶基质到钙钛矿前驱体溶液中,以解决钙钛矿晶体薄膜的脆性问题。研究表明,通过调控掺杂量可实现钙钛矿晶体的垂直并联结构生长,消除了横向晶界对于器件效率的影响。同时,该结晶方式形成的弹性 “ 砖泥 ” 结构在力学稳定性上实现突破,首次实现平面薄膜的可拉伸功能。通过这种 仿生结晶和结构设计 ,所制备 1cm 2 的柔性钙钛矿太阳能电池光电转换效率突破 15% 。 56cm 2 大面积电池组件第三方认证效率高达 7.9% 。 该太阳能电池组件具有光电转换效率高、性能稳定、可穿戴贴合性强等优势,有望应用于可穿戴电子器件。 该研究成果发表在近期出版的《能源和环境科学》 上( Energy Environ. Sci. , 2018, DOI: 10.1039/C8EE01799A )。