《化学所在可穿戴钙钛矿太阳能电源研究中取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-12-19
  • 可穿戴电子是未来电子元器件研究发展的重要方向,其中电源是核心的组成部分。电源的获取方式和效率影响着未来可穿戴电子的设计与功能。目前,可穿戴电子设备的电源主要为锂离子电池,其固有特性一定程度上限制了可穿戴电子的户外使用性、安全性和人体皮肤贴合性。

    近年来,金属有机杂化钙钛矿太阳能电池以其优越的光电转换性能受到广泛关注,为其作为电源应用于可穿戴电子设备提供了可能。然而到目前为止,柔性钙钛矿太阳能电池尚未能实际应用于可穿戴电子设备中。其重要原因之一是钙钛矿材料本身的易脆性,导致大面积电池效率重现性差和无法适合复杂的人体动作。

    在科技部、国家自然科学基金委和中国科学院的大力支持下,中国科学院化学研究所绿色印刷重点实验室研究员宋延林课题组科研人员近年来在印刷制备钙钛矿晶体及电池器件方面开展了研究。他们在印刷制备钙钛矿材料方面取得进展,实现了相比传统工艺更环保的喷墨打印制备( J. Mater. Chem. A 2015, 3, 9092-9097 );通过控制打印过程实现了钙钛矿单晶材料的可控生长( Sci. Adv. , 2018, 4, eaat2390 ; Small , 2017, 13, 1603217 )。基于电池器件图案化设计也取得系列进展( Adv. Mater. 2018, 30, 1804454 ; Adv. Energy Mater. , 2018, 8, 1702960. ; Nano Energy , 2018, 46: 203-211 ; Nano Energy , 2018, 51: 556-562 ),并通过纳米组装 - 印刷方式制备蜂巢状纳米支架作为力学缓冲层和光学谐振腔,从而显著提高了柔性钙钛矿太阳能电池的光电转换效率和力学稳定性( Adv. Mater. 2017, 29, 1703236 )。

    在上述研究的基础上,他们受自然界中珍珠质结晶机理及结构的启发,引入两亲性弹性结晶基质到钙钛矿前驱体溶液中,以解决钙钛矿晶体薄膜的脆性问题。研究表明,通过调控掺杂量可实现钙钛矿晶体的垂直并联结构生长,消除了横向晶界对于器件效率的影响。同时,该结晶方式形成的弹性 “ 砖泥 ” 结构在力学稳定性上实现突破,首次实现平面薄膜的可拉伸功能。通过这种 仿生结晶和结构设计 ,所制备 1cm 2 的柔性钙钛矿太阳能电池光电转换效率突破 15% 。 56cm 2 大面积电池组件第三方认证效率高达 7.9% 。 该太阳能电池组件具有光电转换效率高、性能稳定、可穿戴贴合性强等优势,有望应用于可穿戴电子器件。 该研究成果发表在近期出版的《能源和环境科学》 上( Energy Environ. Sci. , 2018, DOI: 10.1039/C8EE01799A )。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=367995
相关报告
  • 《倒置结构钙钛矿太阳能电池研究取得重要进展》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-07-07
    • 钙钛矿以其长的载流子扩散长度、长的载流子复合寿命和宽的吸收范围,已经成为低成本和高性能太阳能电池的潜在材料。经过十多年的发展,单结钙钛矿太阳能电池的光电转换效率已提高至25%以上,为太阳能电池产业的升级转型提供了新途径。因倒置平板结构器件具有可低温制备、可忽略的迟滞效应、高稳定性的特性,并可以制备成叠层电池,所以其备受重视。然而由于钙钛矿材料的多晶性和离子特性,钙钛矿中存在大量导致离子迁移和载流子非辐射复合的缺陷,且缺陷是水/氧渗透的主要通道,会显著降低钙钛矿薄膜甚至器件的稳定性。 前期,中国科学院宁波材料技术与工程研究所有机光电材料与器件团队在葛子义研究员的带领下通过薄膜形貌调控、载流子传输层修饰和新型二维钙钛矿材料设计(Angew. Chem.Int. Ed. 2023, 62, e2022175; Adv. Funct. Mater. 2023, 2301956; Adv. Energy Mater. 2021, 11, 2101416;Adv. Funct. Mater. 2022, 10, 2210600;Infomat 2022, e12379;Nano Energy 2022, 93, 106800;Energy Environ. Sci. 2022, 15, 3630)等手段,大幅提升了钙钛矿太阳能电池的效率和稳定性。然而,钙钛矿中的缺陷和光诱导引起的相分离将显著降低钙钛矿太阳能电池的性能和稳定性。为了解决这一问题,团队基于添加剂工程,利用可变形添加剂优化前驱体溶液胶体尺寸分布,增大钙钛矿薄膜晶粒尺寸,释放晶界残余应力,钝化铅、碘和有机阳离子缺陷,抑制光诱导引发的相分离。此外,添加剂还可优化钙钛矿能级,从而促进载流子提取/传输,减少陷阱辅助复合。通过该方法制备的钙钛矿太阳能电池的性能得到大幅度提升,基于富溴钙钛矿(FA0.88Cs0.12PbI2.64Br0.36) 和贫溴钙钛矿(FA0.96Cs0.04PbI2.8Br0.12)的器件分别获得了23.18%和24.14%的最佳效率,并且基于贫溴钙钛矿的柔性钙钛矿太阳能电池也获得了23.13%的出色效率,是迄今为止报道的柔性钙钛矿太阳能电池的最高值之一。这项工作为添加剂工程中钝化缺陷、应力消除和抑制相分离提供了新的见解,为开发最先进的太阳能电池提供了可靠方法。 相关成果以“A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24%”为题发表在国际知名期刊Advanced Materials上。宁波材料所博士后谢莉莎、硕士生刘健为共同第一作者,宁波材料所葛子义研究员和刘畅研究员为该论文的通讯作者。上述工作得到国家相关人才计划(21925506)、国家自然科学基金(U21A20331、81903743、22279151、22209192、62275251)和博士后面上项目(2022M713242)等项目的支持。(来源:中国科学院宁波材料技术与工程研究所) 相关论文信息:https://doi.org/10.1002/adma.202302752
  • 《突破 | 宁波材料所在高效稳定柔性钙钛矿太阳能电池及其扩展制备方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-04-18
    • 光伏技术是应对气候变化等的重要解决方案。其中,柔性钙钛矿太阳能电池具有高功质比、可低温/溶液加工、超薄轻柔等优势,在可穿戴/便携式设备移动电源、建筑光伏一体化等领域展现出应用前景。然而,钙钛矿在柔性衬底上的成膜结晶质量差、机械稳定性和运行稳定性亟需改良、大面积扩展制备可靠性有待提高,这些问题对柔性钙钛矿太阳能电池的商业化提出了挑战。 中国科学院宁波材料技术与工程研究所葛子义团队基于原位交联策略在改善柔性钙钛矿的成膜与稳定性方面的优异表现,针对已有原位交联策略需高温、引发剂引发且功能性不足的矛盾,设计了功能性可交联单体(FTA)。FTA的聚合反应是一条低温且无需引发剂的路线,其原位交联反应可辅助柔性衬底上钙钛矿的结晶,有助于得到高质量、结晶性好的柔性钙钛矿薄膜。 研究发现,交联后的单体[CL(FTA)]沿晶界分布,可同时实现化学钝化和晶界调控,紧密连接分散的晶粒,从而抑制非辐射复合损失,释放薄膜内部残余应力,改善薄膜的本征脆性。优化后的柔性钙钛矿太阳能电池光电转换效率达24.64%(经认证为24.08%),是当前反式结构柔性钙钛矿太阳能电池的最高值,并表现出良好的运行稳定性和机械耐久性,在最大功率点连续追踪1000小时和弯折循环10000次后,仍能够保持初始效率的90%以上。同时,该策略还表现出良好的扩展制备可靠性,所制备的10.24cm2柔性模组实现了17.13%的优异效率。 (a)原位交联策略辅助柔性衬底上的结晶和晶界操控示意图;(b)可扩展性展示