《国家纳米科学中心戴庆课题组在范德华材料极化激元领域取得重要进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-11-11
  • 光电集成芯片可以最大限度发挥光子传输、电子计算的优势,是获取跨越式信息处理能力的关键器件。现有硅基光电集成方案主要通过光电效应实现光电信号转换,其中光模块主要依赖光纤、波导和微镜等技术。但是由于光学衍射极限的限制,微米尺寸的光传输模块难以与纳米尺寸的电计算模块联接融合,严重制约光电芯片集成度的提升。为此,国家纳米科学中心戴庆研究团队提出利用范德华材料极化激元压缩光波,并在纳米尺度上对光进行“操控”,有望为光电互联提供新的方案。

    在前期的研究工作中,戴庆课题组与合作者突破了传统静电掺杂和液体化学掺杂技术难以兼顾载流子迁移率和浓度的瓶颈,发展了兼具高迁移率和高浓度的气相化学掺杂技术,实现了石墨烯费米能级从0到0.7 eV宽范围调制,获得了迄今为止室温下石墨烯等离激元的最远传输记录(Nature Communications, 2022, 13: 1465.)。此外,通过激发结构的设计,实现了α-MoO3中双曲声子极化激元的面内光学聚焦(Advanced Materials, 2022, 34(23): 2105590.)。

    在此基础上,研究团队构建了高质量的石墨烯/α相氧化钼异质结,实现了异质结中杂化极化激元等频色散轮廓从开口到闭合的原位、动态、可逆拓扑转变,打破了声子极化激元传输受支撑材料晶向的限制。此外,基于介电环境对杂化极化激元色散的影响,研究团队进一步构造了宽度仅有1.5μm 的二氧化硅平面透镜,实现了极化激元椭圆传播模式的纳米聚焦。不仅将入射光的波长压缩至原来的4.8%,同时能量增强4.5倍。这项研究利用极化激元实现纳米尺度光的操控,未来有望应用于纳米尺度光电融合与器件集成等诸多领域。

    8月18日,相关研究成果以Doping-driven topological polaritons in graphene/α-MoO3 heterostructures为题,发表在Nature Nanotechnology期刊上。韩国科学技术高等研究院的Min Seok Jang教授在同期发表的新闻和评述文章里评价该工作突破了传统声子极化波受限于晶格结构而难以调控的难题,为极化波解锁了重要的调控功能,对将来实现纳米成像、光学传感和纳米级能量操纵等应用意义重大。

    国家纳米科学中心戴庆研究员,西班牙光子科学研究所Javier García de Abajo教授和Renwen Yu为该文章的共同通讯作者,中心胡海副研究员为共同一作和共同通讯作者之一,博士研究生陈娜和滕汉超是共同一作。上述研究工作获得了国家重点研发计划纳米科技重点专项、国家自然科学基金、中国科学院人才项目及中国科学院战略性先导科技专项B类等项目的支持。

     

    图. (a)近场光学实验观测石墨烯/α-MoO3异质结中杂化极化激元拓扑转变以及衬底调控拓扑极化激元平面聚焦示意图。

    (b)拓扑极化激元平面聚焦近场光学成像图。

  • 原文来源:http://www.nanoctr.cas.cn/zytp2017/202208/t20220824_6503067.html
相关报告
  • 《国家纳米科学中心在二维材料范德华界面力学研究取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:万勇
    • 发布时间:2021-11-26
    • 近日,国家纳米科学中心张忠研究员、刘璐琪研究员团队在范德华界面力学行为研究方面取得重要进展。相关研究成果以“Elastocapillary cleaning of twisted bilayer graphene interfaces”在线发表于Nature Communications (12, 5069, 2021. https://doi.org/10.1038/s41467-021-25302-2)。 以石墨烯为代表的二维材料具有优异的力、电、光、热等物性。通过逐层堆垛组装构筑的范德华同质/异质结体系可进一步拓展其性能,如特定角度堆叠的双层转角石墨烯表现出超导、超滑等物理力学行为。由于二维材料的大比表面积特性,在构筑范德华同质/异质结过程中,不可避免地夹杂空气中水分子等杂质并聚集形成微纳米尺度鼓泡。一方面受到污染的范德华界面预期会显著降低微纳米器件的性能。另一方面,这种微纳米尺度鼓泡具有高压、限域、大变形等特征,为二维材料应变工程、高压化学、限域催化、电镜下液体池等多领域提供了新的研究契机。因此,如何克服鼓泡污染实现范德华界面原子级洁净、鼓泡应变大小及分布、压差等因素是二维材料制备、转移、物性测量及应用中不可回避的关键问题。 针对同质/异质范德华材料界面力学行为难于测量与表征这一难题。研究团队提出角度可控范德华同质/异质结构筑新策略,实现了转角双层石墨烯制备(ACS Appl. Mater. & Interfaces, 2020; 12(36): 40958-67)。该工作中,研究团队借助侧向力显微镜技术表征转角石墨烯莫尔云纹,实现了对范德华界面洁净度的可视化表征。借助毛细力辅助转移技术引入水、乙醇等介质构筑了纳米级液泡。在弹性能和界面能竞争机制下纳米液泡呈现几何自相似性,具有特定弹性毛细参数。在探针力的激励下石墨烯范德华界面表现出自清洁现象;得益于液泡的边缘失稳,相邻液泡间发生“长程”作用诱导纳米液泡发生自发融合。研究揭示了不同于传统奥斯特瓦尔德熟化机制下二维材料弹性能对融合过程的影响和贡献。通过理论分析结合微孔鼓泡实验技术,进一步研究了预张力对弹性毛细参数和液泡间“长程”相互作用影响及调控,相关机制得到分子动力学模拟支持和验证。 张忠研究员课题组长期致力于低维微纳米材料及结构力学行为研究,在该领域有着深厚的研究经验积累。通过自主搭建的微纳米尺度鼓泡技术-原子力显微术-显微拉曼光谱联用测试表征技术平台,近5年先后实现了双层石墨烯层间范德华界面可控剪切变形与界面剪切应力测量(Phys. Rev. Lett. 2017);揭示界面强弱差异对微纳米尺度鼓泡应变分布及大小的影响,提出预测纳米尺度不同形状鼓泡应变大小和分布的理论解(Phys. Rev. Lett. 2018,封面);实现了纳米级厚度二维材料弯曲刚度实验测量。由于层间范德华界面剪切变形和滑移影响,材料本征力学参数弯曲刚度和杨氏模量表现为独立力学参量,传统薄板理论中弯曲刚度与厚度关系不再适用(Phys. Rev. Lett. 2019, 封面);并对以上研究成果在应变工程、纳米复合材料等领域的影响进行了评述,揭示微纳米尺度界面力学在多学科领域研究中的重要影响(Adv. Mater. 2019, Compos. A 2021)。 中国科学技术大学在国家纳米中心联合培养侯渊博士、美国德州大学奥斯丁分校戴兆贺博士、清华大学张帅博士为论文共同第一作者,分子动力学模拟由清华大学冯诗喆博士完成。国家纳米科学中心刘璐琪研究员、张忠研究员,清华大学李群仰教授、徐志平教授为该工作的通讯作者。该系列工作先后得到了国家自然科学基金委项目重大和重点项目、中国科学院战略性先导科技专项B类、科技部重大科学研究计划等项目的共同资助。 原文链接:https://www.nature.com/articles/s41467-021-25302-2。
  • 《国家纳米科学中心金纳米棒材料组装研究取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:万勇
    • 发布时间:2017-12-07
    •   微纳加工方法主要分为“自上而下”和“自下而上”两种基本类型。前者是目前广泛应用于微纳加工领域的主流技术,但其由于受到物理极限的制约,一般加工分辨率在几十纳米量级上。后者则可在更小的尺度(包括分子尺度)上实现加工,被认为是一种突破物理限制的有效途径。然而,“自下而上”的组装方法由于科学认知和实验技术的不足,导致其在低缺陷、大面积、组装过程、组装结构等四个方面存在持续的挑战。相对而言,组装结构面临的障碍最大。这其中,一个最重要问题是如何实现组装对称性的可调控。组装对称性可调控对于组装结构多样性和组装体功能的丰富无疑是非常重要的。一般而言,由于形状互补性,组装结构对称性受到组装单元的形貌限制,四方单元易于形成四方密排结构,而球型则形成六方密排对称结构。由于在组装动力学过程中组装单元间的复杂力平衡和热力学最小原理的要求,打破形状依赖的组装结构对称性似乎是一个难以实现的目标。   国家纳米科学中心和中国科学院纳米科学卓越中心刘前课题组与吴晓春课题组、邓珂课题组以及美国科罗拉多大学Ivan I. Smalyukh课题组合作,通过引入一种新概念的主导控制力,首次实现了纳米金棒的四方对称性组装,一举突破了一直以来八面体金棒只能是形状依赖的六方对称结构的实验结果。这一结果也在八面体银和钯纳米棒上得到了实现,展示了这种方法的普适性。多尺度模拟计算进一步揭示这种控制力主导了非形状依赖的组装过程,并很好的解释了四方对称比六方对称具有更高的热力学稳定性的实验结果。这种方法开辟了一条打破形状依赖组装对称性的新途径,为组装结构的多样性和纳米材料组装结构的可设计、可控提供了了有力工具,将为推动纳米组装技术的进步提供助力。   该工作是刘前课题组前期研究(Nanoscale, 2014, 6, 3064;Langmuir 2013, 29, 6232;Chem. Commun., 2012, 48, 2128; Langmuir 2011, 27, 11394)的进一步拓展,已于 11月10 日在线发表在《自然·通讯》(Nature Communications 2017, 10, 13743)。文章链接:https://www.nature.com/articles/s41467-017-01111-4。该工作获得了国家重点研发计划纳米科技重点专项、中国科学院战略性先导科技专项A、国家基金委和欧盟项目的支持。