《水凝胶嵌入的纳米晶体-羟基磷灰石颗粒(弹性块),基于一种交联的聚乙烯基吡酯,作为一种老鼠胫骨模型的骨接代》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-10-17
  • 本研究的目的是探讨在手术中使用弹性特性(弹性块)的骨移植块的体内特性和水平。

    材料和方法:36只雄性大鼠在胫骨中接受了良好的骨缺损的手术。所有的缺陷——每一种动物——都有一种未烧结的纳米结晶羟基磷灰石,要么是一种非交联水凝胶载体(CONT,n=18),要么是一种交联的水凝胶载体(弹性块EB,n=18),分别基于聚乙烯基吡咯(PVP)和硅溶胶。这些动物在12岁(n=12)、21岁(n=12)和63天(n=12)后被杀死。摘要用石蜡切片法测定了骨形成和缺陷的愈合。另外,免疫组化学(抗酸磷酸酶阱和碱性磷酸酶aP)、基于抗体的检测(CD68)和对硅原子浓度的分散x射线散射测量结果进行了分析。

    结果:在12天21天的时间里,在EB观察到一个较大的骨缺损区域。63天后,发现了类似的骨缺损区域。在整个电子商务中,剩余的载体材料的数量在任何时候都是较高的。在CONT中,12天内没有发现任何残余的载体材料。CD68的分析显示,在21天的时间里,CD68-阳性标记细胞的水平明显较低,分别为12和63天。此外,12天后在CONT中观察到显著更高水平的阳性标记细胞。随后,在EB(21和63天)中,呈阳性的细胞呈阳性的细胞水平稍高。此外,观察每个组的活细胞阳性细胞的水平也没有显著的差异。

    结论:骨替代(EB)与交联的基于pvpa的水凝胶载体,在开始的时候有更多的剩余的载体材料和剩余的骨替代物。这种延迟降解被认为是观察到较低水平的骨重建的原因,是由于PVP结构中的辐射变化(交叉连接)引起的。

    ——文章发布于2017年10月12日

相关报告
  • 《高负载的纳米羟基磷灰石/石墨烯纳米带复合材料通过骨质疏松动物模型引导骨再生》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-02-06
    • 背景:对于骨质疏松症患者,很难找到能够优化骨修复治疗和充分骨整合的生物活性化合物。具有石墨烯氧化物的纳米羟基磷灰石/碳纳米管被称为石墨烯纳米带(GNR)复合材料,由于其生物活性和骨整合性能,已成为一种有前途的骨再生材料/支架。在此,我们使用骨质疏松模型评估了nHAp/GNR复合材料(nHAp/GNR)促进骨再生的作用。 材料与方法:首先,制备3种不同的nHAp/GNR(1、2、3 wt%的GNR)并进行表征。在体内分析中,使用36只Wistar大鼠(体重250-300 g的白化变种,Comissao de Etica no Uso de Animais [CEUA] n. 001 /17)。在植入前,雌性大鼠卵巢切除术诱发骨质疏松症。45天后,使用3.0 mm Quest trephine钻头造成胫骨骨折。然后,在21天和45天的不同时间,将动物分为6个样本组。使用刮匙将上述样本中的3毫克填满病变。在21或45天的植入后,动物安乐死进行分析。进行组织学、生化和放射学分析(DIGORA法)。采用方差分析、Tukey检验、Kolmogorov-Smirnov检验对数据进行评价,P<0.05具有统计学意义。 结果:nHAp和GNR均具有骨传导活性。然而,nHAp/GNR的再生活性与其浓度成正比,依次为3% >、2% >、1% wt。 结论:分析纳米颗粒对骨质疏松大鼠骨再生的促进作用与分析时间无关。 ——文章发布于2019年1月29日
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。