《自愈纳米颗粒的广泛应用》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2020-11-25
  • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。

    纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。

    自愈纳米粒子的一般性质和机理

    在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。

    纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。

    自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素:

    矩阵的修改

    纳米管的功能

    处理方案

    矩阵-纳米粒子相互作用或兼容性

    2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。

    纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。

    研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。

    自愈合纳米颗粒的应用

    聚合物电损伤的自我修复

    电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。

    高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。

    科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。

    在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。

    乳腺癌术后复发的预防

    水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。

    水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。

    利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。

    石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。

    自愈的电池

    锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。

    尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。

    伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。

    自我修复DNA纳米结构

    科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。

    纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。

    自愈合石墨烯基复合生物传感器

    可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。

    在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。

相关报告
  • 《在TiO2纳米片上固定的AuPd纳米颗粒的快速合成,可以有效地脱氢甲酸》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-06-11
    • 安全高效的储氢技术是氢能源广泛利用的关键技术之一。甲酸被认为是一种安全、方便的化学储氢材料。然而,高效非均相催化剂的缺乏阻碍了其实际应用。在此,我们提出了一种简便的浸湿沉积方法,用于合成以TiO2纳米片(AuPd/TiO2纳米片)为载体的超细AuPd合金纳米颗粒,并将其作为高效催化剂用于FA脱氢。在不同温度下煅烧TiO2纳米片,以改变催化剂的催化活性。AuPd /二氧化钛nanosheets - 400展览上活动催化英足总释放96%的总氢含量的初始周转频率值592摩尔H2摩尔−1金属h−1 25°C和活化能低11.8 kJ摩尔−1。详细的表征表明,AuPd中心的合金结构、TiO2纳米片的相态和结晶度以及AuPd纳米颗粒与TiO2纳米片基体之间的强电子传递相互作用是其优异的催化性能。 ——文章发布于2018年6月8日
  • 《Acta Mater. :镁合金中纳米颗粒对枝晶生长的作用》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-26
    • 轻质合金中添加纳米颗粒能够提高材料的力学性能,得到了研究者的广泛关注。轻质合金具有非常高的应用前景,而合金的力学性能很大程度上决定了材料的应用广度和深度。目前常用的纳米颗粒有SiC,Al2O3,TiB2,Y2O3和AlN等。这些纳米颗粒对合金的显微结构和性能具有显著影响。但是其具体的作用机制还不明确。本文采用高能同步辐射X射线3D原位表征手段,揭示了纳米颗粒对凝固过程中的枝晶生长速率和枝晶形貌转变的影响,通过定量化的分析阐明了SiC纳米颗粒对镁合金晶粒的细化机理,即:促进晶粒形核和抑制枝晶生长。 成果简介 近日,英国曼彻斯特大学的Peter D. Lee和中国大连理工大学的郭恩宇(通讯作者)等人研究发现,熔体加工过程是一个有效的、制备金属基纳米复合材料的方法。但是,目前对纳米颗粒如何影响凝固过程中的显微结构演变的研究还不明确。本文研究了Mg-25Zn-7Al (wt.%)合金中,SiC纳米颗粒对α-Mg枝晶生长的影响。本文采用同步辐射X射线4D(三维+时间)方法,研究了不同冷却条件下,含有和不含有纳米颗粒的合金的凝固过程,并对凝固过程中枝晶的主要特征进行了定量化分析,包括:晶粒的微观形貌、尺寸分布和枝晶尖端的生长速率。为获得较高质量的图像数据,研究中采用了一种较新的数据重建和图片处理方法。研究结果表明,纳米颗粒的添加有助于晶粒的形核,抑制枝晶生长,并改变初生枝晶的生长形貌。LGK模型计算结果表明,凝固过程中的枝晶形貌变化与纳米颗粒抑制枝晶尖端Zn的有效扩散有关,从而降低枝晶尖端生长速率。本研究提供的随时间演变的动态实验数据为后续在金属基复合材料(MMNC)中开展晶粒生长模拟研究提供了可靠的验证数据。相关成果以“The influence of nanoparticles on dendritic grain growth in Mg alloys”为题发表在Acta Materialia上。 本文采用同步辐射X射线原位3D成像的方法,研究了Mg-25?wt.%Zn-7wt. %Al 合金中,SiC纳米颗粒对晶粒形核和枝晶生长的作用。研究发现,纳米颗粒的添加减小晶粒尺寸;SiC纳米颗粒减小晶粒尺寸的主要机制:(1)增加异质形核;(2)纳米颗粒降低熔体中Zn的扩散,从而降低枝晶的生长速率。其中,纳米颗粒带来的异质形核作用以及超声熔体处理技术的结合,增加了孔洞/氧化物的数量和体积分数,从而增加了晶粒异质形核点的密度。 文献链接:The influence of nanoparticles on dendritic grain growth in Mg alloys(Acta Materialia, 2018, DOI: 10.1016/j.actamat.2018.04.023)。