《不明觉厉!我国科学家揭秘太阳光催化制氢的“神奇魔法”》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-10-20
  • 太阳能光催化反应可以使水分解产生氢气,以及还原二氧化碳产生“太阳燃料”。太阳光这种神奇的“魔法”是如何实现的,一直是科学领域的难题。近日,从中国科学院传来好消息:中国科学院大连化学物理研究所(以下简称“大连化物所”)李灿院士、范峰滔研究员等带领的科研团队成功揭开这一谜团,“拍摄”到光生电荷转移演化全时空影像。相关研究成果于10月12日在国际学术期刊《自然》上发表。

    光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。“光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。”范峰滔介绍,由于这一过程跨越从飞秒到秒、从原子到微米的复杂时空尺度,揭开这一过程的微观机制极具挑战性。

    “长期以来,我们的团队前赴后继一直在致力于解决这一问题,在这个工作中,集成多种先进技术和理论,我们在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。

    李灿介绍,通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射电子显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到达表面反应中心的整个机制。

    时空追踪电荷转移的能力将极大促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。“未来,这个成果有望促进太阳能光催化分解水制取‘太阳燃料’在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。

    太阳能分解水制氢有三种典型的技术路线,分别为光伏辅助电解水、光催化分解水和光电催化分解水。其中光伏辅助电解水,也就是常说的利用光伏所发绿电进行水电解来制取绿氢。

    利用光催化剂实现太阳能分解水制氢是最简单、最经济的,装置搭建更为容易,整体廉价、易大规模化。这一技术始自1972年,由日本东京大学Fujishima A和Honda K两位教授首次报告发现TiO2单晶电极光催化分解水并产生氢气这一现象,从而揭示了利用太阳能直接分解水来制氢的可能性,开辟了利用太阳能光解水制氢的研究道路。光催化剂目前进入科学家视野的包括钽酸盐、铌酸盐、钛酸盐、多元硫化物等。

    除了对催化剂的寻寻觅觅,如何实现高效的光生电荷的分离和传输也是重要一环,大连化物所这一发现对光催化制氢有巨大的促进作用。

    资料来源:人民网等

  • 原文来源:https://www.in-en.com/article/html/energy-2319901.shtml
相关报告
  • 《俄中科学家研制出新型制氢催化剂》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-12
    • 俄罗斯托木斯克理工大学(TPU)与吉林大学(中国长春)的科学家共同研制出一种用于从水中制取氢气的有效且长寿命催化剂。据研发者称,新型催化剂的耐久性和稳定性是同类更贵产品的七倍,这有助于提高从水中制氢的产量,用于化学工业和燃料制造。成果发表在《iScience》期刊上。 近年来,氢越来越被视为一种能源载体,因为与化石燃料相比,它具有许多优点。工业规模的低成本制氢通过电解(电流通过时水分子分裂)进行。然而,这一过程需要催化剂——可以降低电力成本的物质。昂贵的铂族金属在水的电解中表现出最大的催化活性。 作为现有昂贵催化剂的替代品,托木斯克理工大学和吉林大学的科学家研发出一种基于碳化钼的易于获取的水电解催化剂。他们说,这种催化剂的耐久性是现有同类产品的七倍。 该研究参与者之一、托木斯克理工大学能源工业先进材料实验室研究员尤利娅·瓦西里耶娃解释称:“我们研发了一种结构,是融合到添加氮原子的石墨基体中的碳化钼表面的氧化钼。与同类物质相比,新型催化剂的合成简单且节能,并且可在15天内保持稳定,而同类催化剂在50小时后就会失效。”她补充说,新型催化剂的生产采用非真空电弧法,该方法用于获取生产磨料、抛光材料和耐磨涂层所需的超硬材料。与生产各种元素碳化物的其他方法不同,这种方法不需要笨重的设备和隔离反应介质,而是在露天进行合成。 瓦西里耶娃强调:“析氢反应中催化剂的活性通过过电压值进行评估。标准铂基催化剂的过电压值为-31mV,过电压越接近该值越好。大多数难以生产且价格昂贵的现有同类物质的过电压值平均在-200至-250 mV之间。我们的催化剂则处于-148 mV的水平,且在合成的简易性方面具有优势。” 未来,专家计划改进新型催化剂的特性,并继续寻找更有效的成分。
  • 《科学家发明光催化水裂解新材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-16
    • 太阳能清洁且丰富。不过,当没有日光照射时,必须将其储存在电池中,或者通过一个被称为光催化的过程,将太阳能用于燃料生产。在光催化水裂解中,太阳能将水分解成氢和氧。随后,氢和氧在燃料电池中被重新组合,以释放能量。   日前发表于美国物理学会出版集团旗下期刊《应用物理学快报》的一篇论文显示,如今,一类新材料——卤化物双钙钛矿可能刚好拥有裂解水的属性。   “如果我们能发明一种被用作水裂解光催化剂的材料,这将是一个巨大的突破。”论文共同作者Feliciano Giustino表示。   此前,研究人员试验了多种光催化材料,如二氧化钛(TiO2)。虽然该材料能利用太阳能分解水,但效率不高,原因在于它无法很好地吸收可见光。迄今为止,还未有用于普通水裂解的光催化材料实现商业化。   来自英国牛津大学的George Volonakis和Giustino利用超级计算机计算了4种卤化物双钙钛矿的量子能量状态。他们发现,Cs2BiAgCl6和Cs2BiAgBr6是最有前景的光催化材料,因为它们能比TiO2更好地吸收可见光。同时,两者能产生拥有充足能量从而将水分解成氢和氧的电子和空穴。   Giustino表示,极少有材料同时具备所有这些特征。“我们不能说这肯定行得通,但这些化合物似乎拥有全部合适的属性。”   Giustino及其团队最初在寻找制造太阳能电池的材料时发现了这种钙钛矿。过去几年间,钙钛矿引发广泛关注,因为它可提高串联设计硅基太阳能电池的效率。串联设计可将钙钛矿电池直接集成到高效硅电池上,但它们含有少量铅。如果被用于太阳能电站的能量收集,铅可能造成潜在的环境危害。