《探索 | 石墨烯莫尔超晶格中强关联态的首个光谱学证据》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-03-22
  • 近日,《Science》以“Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice”为题发表了上海交通大学物理与天文学院陈国瑞副教授与美国麻省理工物理系巨龙助理教授课题组等的合作研究成果,报道了在石墨烯莫尔超晶格体系中强关联现象的首个光谱学证据。

    强关联(电子-电子相互作用)是凝聚态物理中的重要概念,其带来了很多重要的物理现象,比如磁性、高温超导等。近几年,人们通过将相同或不同二维材料进行转角堆叠制备出二维莫尔超晶格(例如魔角石墨烯),并在此类材料中发现了强关联现象,包括Mott绝缘体、超导、轨道磁性、陈绝缘体、Wigner晶体等,并随之产生了许多有趣的问题,为研究强关联物理提供了一个全新的平台。在众多莫尔超晶格体系中,ABC-三层石墨烯/氮化硼超晶格具有丰富的可调控性,人们可简单地通过调节栅极电压,实现对体系中载流子浓度、关联强度和拓扑性质的连续调节,进而在ABC-三层石墨烯莫尔超晶格中原位实现金属、Mott绝缘体、超导体以及陈绝缘体。但受限于顶层栅极金属的存在,之前的实验工作主要集中在电学输运测量,缺少重要的谱学信息。

    图1. (A) ABC-三层石墨烯/氮化硼莫尔超晶格器件与FTIR光电流测量示意图;(B) 价带-导带能隙的光学跃迁;(C) Mott绝缘态的光学跃迁

    为了对莫尔超晶格体系中的关联强度等基本信息进行直接探测,此项工作将器件的顶栅设计成在红外波光有一定透射率的镍铬合金,利用傅里叶变换红外光电流光谱(Fourier transform infrared photocurrent spectroscopy)对ABC-三层石墨烯莫尔超晶格的强关联态(Mott绝缘态)进行了测量研究。随着增加垂直方向电场,通过测量价带到导带的光学跃迁光谱,在实验上观测到了三层石墨烯莫尔超晶格的能带宽度会减小的趋势,并且观测到在实验范围内最小能带宽度可到~12 meV, 明显小于估算的电子-电子间的库伦能~25 meV,支持了关联效应在体系中占主导作用的理论。进一步,通过调节载流子浓度,将体系调节到n = 1/2 Mott绝缘态,即每个莫尔超晶格中两个电子,观测到了一个能量在18 meV的光学跃迁,通过分析得出,此跃迁对应Lower Hubbard Band(LHB)到Upper Hubbard Band(LHB)的光学跃迁,即体系中的电子间库伦能,与估算的~25 meV接近。并且通过进一步分析,可排除n = 1/2的Mott绝缘态是自旋(spin)或谷(valley)极化的可能性。这一实验结果直接证明了三层石墨烯莫尔超晶格体系中强关联效应的存在,并在实验上给出了与描述强关联体系的Hubbard model相关的能量尺度,对精确描述莫尔超晶格中的强关联提供了实验支持。同时,此项工作展示了三层石墨烯莫尔超晶格的丰富物理与傅里叶变换红外光电流光谱在相关体系测量中的独特优势。

相关报告
  • 《探索 | 二维Ruby晶格材料的实现》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-09-23
    • 具有非平庸晶格结构的二维材料中存在丰富的物理特性,这些特性由于受到对称性的保护而非常稳定。自以石墨烯和硅稀为代表的蜂窝晶格在布里渊区的K点存在线性色散狄拉克锥特性被发现以来,众多类石墨烯蜂窝晶格的二维晶线图晶格体系由于极有可能是实现拓扑和平带的良好平台而引起了凝聚态物理学的广泛研究兴趣。这些二维线图晶格包括如Kagome晶格、Lieb晶格、Checkerboard晶格、Ruby晶格等。迄今为止,Kagome晶格、Lieb晶格、Checkerboard晶格等都已有一些实验上实现的报道,但二维Ruby晶格能否在实验上实现还不明确。Ruby晶格能带结构表现为两个特征:在K点处的两个狄拉克锥和在动量空间中沿着M-Г线的两个平带。这些平带来自晶格中布洛赫波函数的几何阻锉,在未来的自旋电子学和量子器件中具有潜在的应用。 中国科学院物理研究所/北京凝聚态物理国家研究中心吴克辉团队和合作者利用分子束外延技术在Au(111)表面合成了单层的CuCl1+x纳米结构,结合扫描隧道显微镜(STM)及其能谱(STS)技术、X射线光电子能谱(XPS)对其进行了深入研究,并利用第一性原理计算(DFT),证明了该CuCl1+x 单层纳米结构是一个理想的二维Ruby晶格体系。研究表明,CuCl1+x在Au(111)表面形成了一种Cu6Cl8的配位结构,其中Cu原子的排列方式完全符合Ruby晶格结构。STS谱和DFT计算揭示了Cu6Cl8 Ruby晶格位于未占据态3.6eV处的Ruby晶格平带特征峰,以及位于3.7eV处的边界态特征。 该工作首次在一个实际材料体系中实现了二维Ruby原子晶格的构建,观察到了Ruby晶格相关的能带特征峰和边缘电子态。为进一步研究Ruby晶格中有趣的电子结构和丰富的物理现象提供了良好的平台。 图(a)Ruby晶格模型及其特征能带结构。(b)Au(111)表面形成的单层CuCl1+x纳米结构,表现为Ruby晶格。(c-d)Ruby晶格的边缘态
  • 《在石墨烯超晶格中保护狄拉克等离子体》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-08
    • 拓扑光学状态对缺陷有独特的免疫力,使其成为光子应用的理想。这种状态的强大类别是基于对光学响应的时间反转对称性的破坏。然而,现有的建议要么涉及复杂而庞大的结构设计,要么只能在微波系统中运行。在这里,我们展示了一个理论论证,在一个简单的二维(2D)材料结构中,在红外频率上实现了高度密闭的拓扑保护光学状态,一个周期性图案的石墨烯单层,在一个只有2特斯拉的磁场中。在我们的石墨烯蜂窝状超晶格结构中,等离子体在温和的静态磁场下的超晶格节点上表现出了大量的非交互行为,导致了拓扑保护的边缘状态和局部的批量模式的出现。这种方法简单而有力,可以在二维原子层中实现拓扑非平凡的光学状态,并可以为构建快速、纳米级、缺陷免疫的光子器件铺平道路。 ——文章发布于2017年11月01日