《科学家用基因剪切技术编辑DNA单个碱基》

  • 来源专题:转基因生物新品种培育
  • 编译者: 雷洁
  • 发布时间:2016-04-28
  • 大多数遗传疾病源于单核苷酸的突变(点突变)。目前广受专注的基因编辑技术CRISPR/Cas9涉及到切割DNA的两个链条,在目标DNA序列上形成双链断裂。然而,当用于校正单个核苷酸时,标准的CRISPER/Cas9方法通常是低效的,并且在目标位置频繁随机引入插入/剪切基因组,这主要是细胞对DNA双链断裂的反应结果。

    为了提高修正点突变的效率,同时减少插入/缺失的频率,美国马萨诸塞州坎布里奇哈佛大学David Liu 和同事修改了Cas9蛋白,让它不再切割DNA双链,但仍能结合到目标DNA序列。通过在Cas9上安装碱基修饰酶(APOBEC1),研究者能直接将胞嘧啶(C)转换成尿嘧啶(U),而尿嘧啶与胸腺嘧啶(T)的碱基配对方法一致。为了让编辑过的碱基对永久存在于细胞中,研究人员使用第三种蛋白操纵正常细胞修复DNA的过程,使得目标C:G碱基对转变成T:A碱基对。研究表明碱基编辑系统能高效矫正各种在小鼠和人类细胞系中存在的与人类疾病相关的点变异,并且引入插入/缺失量都极低。

相关报告
  • 《科学家用CRISPR制造智能材料:可以传递药物、感知生物信号》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-08-27
    • 还有什么是CRISPR不能做的吗?科学家已经使用这种基因编辑工具制造了大量基因改造生物,同时还用它来追踪动物发育、检测疾病以及控制害虫。 如今,他们又发现了这种基因编辑工具的另一个应用——使用CRISPR创建智能材料,后者能够根据指令改变自己的形状。 研究人员在日前出版的美国《科学》杂志上发表报告称,这种可变形的材料能够用来运送药物,并为几乎所有的生物信号“站岗放哨”。这项研究由剑桥市麻省理工学院生物工程师James Collins主持。 Collins的团队研究的是由脱氧核糖核酸(DNA)链连接在一起的充满水的高分子聚合物(被称为DNA水凝胶)。为了改变这些材料的性质,Collins和他的团队采用了一种形式的CRISPR,后者使用一种叫做Cas12a的DNA剪切酶。(基因编辑器CRISPR-Cas9使用Cas9酶在需要的位置剪切DNA序列) Cas12a酶可以被编程来识别一种特定的DNA序列。这种酶会切断其目标的DNA链,然后切断附近的单链DNA。 这一特性使得研究人员能够构建一系列由CRISPR控制的水凝胶,其中包含一个目标DNA序列以及单链DNA——当Cas12a识别出一个刺激物中的目标序列后,这些单链DNA就会断裂。 单个DNA链的断裂触发水凝胶改变形状,或者在某些情况下完全溶解,进而释放有效载荷。 例如,作为一项治疗的一部分,出于对刺激的响应,研究小组创造的这些水凝胶可以释放酶、药物甚至人类细胞。 Collins希望这种水凝胶能被用来创建智能的治疗方法,例如在肿瘤存在时释放抗癌药物,或者在感染部位周围释放抗生素。 研究人员还将CRISPR控制的水凝胶集成到电子电路中。 在一项尝试中,他们把水凝胶放入一个名为微流体室的小芯片状的装置中,这个装置与一个电子电路相连。当检测到来自包括埃博拉病毒和耐甲氧西林金黄色葡萄球菌等在内的病原体的遗传物质时,作为响应,该电路将会被关闭。 研究团队甚至利用水凝胶开发了一个诊断工具原型——当它在实验室样本中识别出埃博拉病毒的遗传物质时便会发送无线电信号。如果一名团队成员在背包里携带了无线电探测器,他只需简单地走近这些样本就能识别出其中的阳性样本。 纽约州康奈尔大学伊萨卡分校生物工程师Dan Luo说,CRISPR水凝胶是对其他响应性水凝胶的一次改进,因为科学家可以很容易地确定是什么触发了材料的变化。过去创造智能水凝胶时所使用的酶要么不能切割特定的DNA 序列,要么只能切割少量特定的序列,进而限制了它们的适应性。 “我们现在正处于CRISPR的时代。”Collins说,“它已经接管了生物学和生物技术。我们已经证明,它现在可以进入材料和生物材料领域。” CRISPR又被称为基因剪刀,是生物科学领域的游戏规则改变者,这种突破性的技术通过Cas9酶发现、切除并取代DNA的特定部分。这种技术的影响极其深远,从改变老鼠皮毛的颜色到设计不传播疟疾的蚊子和抗虫害作物,再到修正镰状细胞性贫血等各类遗传疾病等等。该技术十分精准、廉价、易于使用,并且非常强大。 ——文章发布于2019-08-26
  • 《瑞士科学家利用新的基因编辑工具治愈小鼠遗传病》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-12-21
    • 10月8日,Nature Medicine杂志发表一项研究显示,瑞士苏黎世联邦理工学院(Swiss Federal Institute of Technology in Zurich)Gerald Schwank教授领导的研究小组应用一种新开发的编辑工具定位和纠正基因突变,通过该方法已治愈了患有苯丙酮尿症(干细胞中编码苯丙氨酸羟化酶的基因突变)的小鼠。 研究人员发现,经过一种胞嘧啶脱氨酶改良的CRISPR/Cas9系统可以特异性结合到需要修正的基因位点上,然后在该处打开DNA双链。脱氨酶将引起疾病的DNA碱基对C-G变为T-A(胞嘧啶脱氨酶可以使胞嘧啶C脱氨形成胸腺嘧啶T),后者一般出现在健康个体相应的碱基位点上。这样一来,发生在苯丙氨酸羟化酶DNA序列上的错误就会得到纠正。在传统的CRISPR/Cas系统中,诱导DNA双链断裂是基因组编辑的核心要素。DNA双链会在一个特定的点被切割,而细胞则会试图用其本身不同的机制来修复这个损伤。如果从外部将匹配的DNA序列添加到细胞中,就可以通过一种专门的修复机制来精确修改特定的遗传序列。而问题是,大多数人类细胞都会使用一些会产生预期外突变的DNA修复系统。 研究人员表示,这种新的基因编辑工具比传统的CRISPR/Cas9方法更有效:在小鼠肝脏中出现错误的基因拷贝中,有多达60%得到了纠正。这使得苯丙氨酸的浓度下降到正常水平,而动物在接受基因编辑工具治疗后不再表现出任何紊乱的迹象。Schwank指出,这种方法在人类治疗相关疾病中有很大的应用潜力,后续还必须进行其他动物模型的临床研究来测试这种新工具的有效性和安全性。Schwank教授目前正筹备资金用来在像猪这样的动物模型上进一步开展跟踪研究。 苯丙酮尿症并不是影响肝脏的唯一遗传代谢紊乱疾病。例如,尿素循环紊乱会妨碍人体从血液中移除氨,使其无法代谢为尿素。这种紊乱主要会导致中枢神经功能障碍,目前唯一可行的治疗方法就是肝移植。因此,Schwank教授也希望能够测试新开发的基因编辑工具来用于此类疾病的治疗。