《科学家用CRISPR制造智能材料:可以传递药物、感知生物信号》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-08-27
  • 还有什么是CRISPR不能做的吗?科学家已经使用这种基因编辑工具制造了大量基因改造生物,同时还用它来追踪动物发育、检测疾病以及控制害虫。

    如今,他们又发现了这种基因编辑工具的另一个应用——使用CRISPR创建智能材料,后者能够根据指令改变自己的形状。

    研究人员在日前出版的美国《科学》杂志上发表报告称,这种可变形的材料能够用来运送药物,并为几乎所有的生物信号“站岗放哨”。这项研究由剑桥市麻省理工学院生物工程师James Collins主持。

    Collins的团队研究的是由脱氧核糖核酸(DNA)链连接在一起的充满水的高分子聚合物(被称为DNA水凝胶)。为了改变这些材料的性质,Collins和他的团队采用了一种形式的CRISPR,后者使用一种叫做Cas12a的DNA剪切酶。(基因编辑器CRISPR-Cas9使用Cas9酶在需要的位置剪切DNA序列)

    Cas12a酶可以被编程来识别一种特定的DNA序列。这种酶会切断其目标的DNA链,然后切断附近的单链DNA。

    这一特性使得研究人员能够构建一系列由CRISPR控制的水凝胶,其中包含一个目标DNA序列以及单链DNA——当Cas12a识别出一个刺激物中的目标序列后,这些单链DNA就会断裂。

    单个DNA链的断裂触发水凝胶改变形状,或者在某些情况下完全溶解,进而释放有效载荷。

    例如,作为一项治疗的一部分,出于对刺激的响应,研究小组创造的这些水凝胶可以释放酶、药物甚至人类细胞。

    Collins希望这种水凝胶能被用来创建智能的治疗方法,例如在肿瘤存在时释放抗癌药物,或者在感染部位周围释放抗生素。

    研究人员还将CRISPR控制的水凝胶集成到电子电路中。

    在一项尝试中,他们把水凝胶放入一个名为微流体室的小芯片状的装置中,这个装置与一个电子电路相连。当检测到来自包括埃博拉病毒和耐甲氧西林金黄色葡萄球菌等在内的病原体的遗传物质时,作为响应,该电路将会被关闭。

    研究团队甚至利用水凝胶开发了一个诊断工具原型——当它在实验室样本中识别出埃博拉病毒的遗传物质时便会发送无线电信号。如果一名团队成员在背包里携带了无线电探测器,他只需简单地走近这些样本就能识别出其中的阳性样本。

    纽约州康奈尔大学伊萨卡分校生物工程师Dan Luo说,CRISPR水凝胶是对其他响应性水凝胶的一次改进,因为科学家可以很容易地确定是什么触发了材料的变化。过去创造智能水凝胶时所使用的酶要么不能切割特定的DNA 序列,要么只能切割少量特定的序列,进而限制了它们的适应性。

    “我们现在正处于CRISPR的时代。”Collins说,“它已经接管了生物学和生物技术。我们已经证明,它现在可以进入材料和生物材料领域。”

    CRISPR又被称为基因剪刀,是生物科学领域的游戏规则改变者,这种突破性的技术通过Cas9酶发现、切除并取代DNA的特定部分。这种技术的影响极其深远,从改变老鼠皮毛的颜色到设计不传播疟疾的蚊子和抗虫害作物,再到修正镰状细胞性贫血等各类遗传疾病等等。该技术十分精准、廉价、易于使用,并且非常强大。

    ——文章发布于2019-08-26

相关报告
  • 《科学家在小鼠细胞中制造COVID受体蛋白》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-03-01
    • 近日,美国能源部布鲁克海文国家实验室和哥伦比亚大学的一组科学家展示了一种生产大量受体的方法,这种受体是导致COVID-19的病毒SARS-CoV-2在人体细胞表面结合的受体。现在病毒刺突蛋白与人类“ACE2”受体之间的结合是病毒感染的第一步。在小鼠细胞中制造功能性人类ACE2蛋白给科学家们提供了一种研究这些受体的新方法,并有可能将它们投入使用。此外,正如刚刚发表在《Virology》期刊上的一篇论文所描述的那样,这种方法可以促进其他被证明难以通过其他方式产生的复杂蛋白质的研究。 布鲁克海文实验室的科学家们在疫情早期的最初目标是制造大量的人类ACE2,然后将这种蛋白质附着在纳米颗粒上。然后可以测试ace2包被的纳米颗粒作为抗病毒治疗药物和/或作为检测病毒颗粒的传感器。 布鲁克海文实验室病毒学家Paul Freimuth与布鲁克海文实验室功能纳米材料中心(CFN)的科学家合作领导了这项研究,他说:“对于这些应用中的任何一种,你都需要大量的蛋白质,而且蛋白质必须具有完整的功能。”“但是制造像ACE2这样的功能性膜蛋白特别具有挑战性,因为蛋白质在细胞膜上定位的过程很复杂。” 一个原因是这些蛋白质在合成后和插入细胞膜之前以各种方式被修饰。特别是,添加到蛋白质中的碳水化合物分子在长蛋白质链如何折叠成最终的3D结构以及蛋白质如何在膜中发挥作用方面起着关键作用。 “碳水化合物约占ACE2蛋白质量的三分之一,”Freimuth说。 科学家用来人工合成蛋白质的最简单的细胞,即细菌,缺乏附着这些碳水化合物附加物的酶。因此,布鲁克海文的研究小组转向了老鼠的细胞,作为哺乳动物,老鼠更像我们,因此能够进行同样的碳水化合物处理。众所周知,小鼠细胞擅长拾取和表达“外来”基因。虽然小鼠细胞也会产生ACE2受体,但小鼠版本的这种蛋白质不会与SARS-CoV-2刺突结合。这意味着科学家们将有一个简单的方法来观察小鼠细胞是否产生人类ACE2蛋白——通过观察刺突是否与细胞结合。 ACE2基因的发现和表达 为了增加小鼠细胞整合并正确读取人类ACE2基因的机会,研究小组使用了完整的基因。人类和其他“高等生物”的基因除了编码构成蛋白质的氨基酸的DNA序列外,还包含大量信息。这些额外的信息有助于调节细胞染色体内的基因结构和功能。 科学家们搜索了作为人类基因组计划的一部分而生成的克隆DNA片段文库,找到了包含完整ACE2基因的片段,并完成了其嵌入的调控信息。人类基因组计划是美国能源部资助的一项努力,旨在绘制出人类所有基因的位置。然后,他们将小鼠细胞暴露在涂有这种DNA片段和另一种蛋白质基因的纳米颗粒中,这种蛋白质使细胞对致命的抗生素具有抵抗力。 “在这种情况下,纳米颗粒充当DNA递送剂,被细胞吞噬,这样DNA就有可能整合到小鼠细胞染色体中,”Freimuth说。“为了找到携带外源基因的细胞,我们将抗生素添加到细胞培养中。那些不能吸收和表达抗生素抗性基因的细胞死亡,而那些获得抗生素抗性的细胞存活下来并生长成菌落。” 科学家们将其中大约50个菌落扩展到单个培养中,然后对它们进行测试,以确定有多少菌落也携带了人类ACE2基因并产生了人类受体蛋白。 检测蛋白质产量 “大约70%的耐抗生素菌落在细胞表面表达人类ACE2蛋白,”Freimuth说。“进一步的分析表明,这些菌落平均含有28份人类ACE2基因。” 重要的是,小鼠细胞保留了“外源”ACE2基因拷贝,并在至少90代细胞中持续制造由这些基因编码的人类ACE2蛋白。 细胞产生的人类ACE2蛋白水平通常与整合到小鼠基因组中的ACE2基因拷贝数成正比。一些克隆的小鼠细胞产生的ACE2是正常小鼠细胞的50倍。 科学家们使用了多种方法来测试小鼠制造的人类ACE2蛋白是否具有功能。其中包括证明含有COVID刺突蛋白的“假病毒”(即sars - cov -2的非致病性替代品)可以与受体结合并感染细胞。 “这些传染性试验表明,在这些小鼠细胞上表达的人类ACE2蛋白是完全有效的,”Freimuth说。 用途及影响 与此同时,来自CFN的共同作者Oleg Gang和Feiyue Teng探索了多种方法来制造富含人类ACE2的细胞外纳米囊泡,以潜在地治疗COVID-19。他们还在研究将ACE2蛋白放置在纳米颗粒上,用于治疗感染或快速检测病毒。 “基于ace2的纳米囊泡面临的挑战在于增强其对SARS-CoV-2的中和作用。我们还在寻找增强和利用ace2偶联纳米颗粒的结合敏感性和特异性的方法,使其对病毒诊断有用。这两种方法都需要未来的优化努力,”Teng说,他是CFN的一名研究助理,广泛研究了这项研究的生物学方面和潜在的基于纳米科学的应用。 “我们很高兴将纳米材料制造的进步与生物分子方法相结合,以开发新的治疗和传感策略,”Gang说,他在哥伦比亚大学担任联合职位。“这项研究使我们能够克服一些方法上的问题,因为纳米材料和生物系统需要完全不同的表征方法。我们在这里学到的东西对我们下一步加强基于纳米粒子的生物传感很重要。” 除了使重组ACE2蛋白的应用成为可能之外,这项工作还展示了一种生产多种复杂蛋白的新方法。例如,介导无数生物和疾病过程的大量细胞表面受体,以及工业上重要的蛋白质,如单克隆抗体和酶。 Freimuth说:“我们的方法是使用完整的基因和小鼠细胞,这些细胞可以适应在巨大的悬浮培养中生长,就像用于培养细菌的液体肉汤培养一样,可以促进这些蛋白质和其他重要蛋白质的大规模生产。” 这项研究得到了实验室指导研究和开发基金的支持,并使用了布鲁克海文国家实验室功能纳米材料中心(CFN)的资源。CFN是美国能源部科学办公室的用户设施,由科学办公室(BES)支持。
  • 《一种新的基因治疗策略,大自然的恩赐 科学家将自然的细胞过程转化为药物传递系统》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-12-19
    • 科学家们已经开发出一种新的基因治疗技术,通过将人类细胞转化成大量充满遗传物质的微小纳米颗粒,这种颗粒具有逆转疾病进程的潜力。 虽然这项研究的目的是作为一个概念的证明,但这种实验疗法减缓了患有神经胶质瘤的老鼠的肿瘤生长,延长了它们的生存时间。神经胶质瘤约占人类恶性脑瘤的80%。 这项技术利用了外泌体,即细胞释放的充满液体的囊,作为与其他细胞交流的一种方式。 而液正在取得进展作为生物友好的载体治疗材料——因为有很多,他们不提示免疫反应,基因疗法的技巧是找到一个方法适合那些比较大的遗传指令在他们小小的身体,治疗效果。 这种新方法依赖于专利技术,可以促使捐献的人体细胞(如成人干细胞)吐出数百万个外泌体,这些外泌体经过收集和纯化后,作为含有药物的纳米载体发挥作用。当它们被注射到血液中时,它们确切地知道在身体的什么地方可以找到它们的目标——即使是在大脑里。 该研究的资深作者、俄亥俄州立大学化学与生物分子工程学名誉教授l·詹姆斯·李(L. James Lee)说:“把它们想象成圣诞礼物:礼物装在一个包装好的容器里,已经付了邮资,可以随时带走。” 它们是不断被给予的礼物,Lee指出:“这是大自然诱导的治疗性纳米颗粒。” 这项研究发表在12月16日的《自然生物医学工程》杂志上。 2017年,李博士和他的同事们宣布了一项名为“组织纳米转染”(TNT)的再生医学发现,掀起了轩然大波。这项技术使用一种基于纳米技术的芯片将生物物质直接输送到皮肤中,这一行为可以将成年细胞转化成任何类型的细胞,以便在患者体内进行治疗。 通过进一步研究TNT成功背后的机制,李实验室的科学家们发现外泌体是将再生物质输送到皮肤表层以下组织的秘密。 在这项研究中,这项技术被第一作者杨兆刚,前俄亥俄州立大学博士后研究员,现在德克萨斯大学西南医学中心,称为细胞纳米化。 科学家们将大约100万个捐献的细胞(比如从人体脂肪中提取的间充质细胞)放在一个纳米工程硅片上,并使用电刺激将合成的DNA注入捐献细胞。正如Lee所描述的,由于这种DNA强制喂食的结果,细胞需要将不需要的物质作为DNA转录信使RNA的一部分排出体外,并修复细胞膜上被戳出的洞。 李说:“他们一举两得:他们修复了细胞膜的渗漏,把垃圾倒出来。”“他们扔掉的垃圾袋就是外泌体。从细胞中排出的是我们的药物。” 电刺激产生的额外效果是,在细胞释放的大量外泌体中,治疗基因增加了数千倍,这表明该技术具有可扩展性,可以生产足够的纳米颗粒供人类使用。 当然,对于任何基因治疗来说,最重要的是知道需要传递什么基因来解决一个医学问题。在这项研究中,研究人员选择通过传递一种叫做PTEN的基因来测试神经胶质瘤的结果,PTEN是一种癌症抑制基因。PTEN的突变关闭了抑制作用,允许癌细胞不受抑制地生长。 对于俄亥俄州立大学聚合物生物医学设备纳米工程中心的创始人Lee来说,生产基因是比较容易的部分。强行输入供体细胞的合成DNA被复制到一个由信使RNA组成的新分子中,信使RNA包含产生特定蛋白质所需的指令。每一个含有信使RNA的外泌体泡都被转化成纳米颗粒,准备好运输,无需担心血脑屏障。 “这样做的好处是没有毒性,不会引发免疫反应,”同样是俄亥俄州立大学综合癌症中心(Ohio State’s Comprehensive Cancer Center)成员的李说。“外泌体几乎遍布全身,包括通过血脑屏障。大多数药物不能进入大脑。 “我们不希望外泌体跑到错误的地方。它们不仅被设定为杀死癌细胞,而且知道到哪里去寻找癌细胞。你不想杀好人。” 在小鼠身上进行的试验表明,与作为对照的物质相比,标记的外泌体更有可能进入脑瘤,并减缓其生长。 Lee说,由于外泌体可以安全地进入大脑,这种药物传递系统有望在未来应用于神经系统疾病,如阿尔茨海默病和帕金森病。 “希望有一天它能被用于医疗需求,”李说。“我们提供了方法。如果有人知道什么样的基因组合可以治愈某种疾病,但他们需要治疗,这里就是了。” 这项工作得到了国家科学基金会的支持;国家自然科学基金;国家心肺血液研究所;国家神经疾病和中风研究所;德克萨斯州癌症预防与研究所,美国脑瘤协会;还有国家癌症研究所。 俄亥俄州立大学的合著者史俊峰、孙景尧、王新梅、马一凡、马尔科奇、蒋志玲、郭广、范雅敏、保罗·贝尔塔尼、若泽·奥特罗和吴璐也参与了这项研究。 ——文章发布于2019年12月16日