《美国科学家开发出可体外无线充电的植入式磁能神经刺激器》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 范月蕾
  • 发布时间:2020-06-13
  • 6月9日,美国莱斯大学科学家开发出可体外无线充电的植入式磁能神经刺激器。该设备呈矩形薄膜状,约米粒大小,由两层材料组成。其中,第一层是由铁、硼、硅和碳组成的磁限制箔,当受到磁场作用时,它会在分子水平上振动;第二层是压电晶体,它将金属箔的振动转换成电压,然后集成电路对电压进行调制进而将其频率降低到神经元会对其做出反应的程度。该研究验证了利用磁电材料进行无线电力传输的概念,有助于癫痫、帕金森氏症、慢性疼痛等疾病的研究和治疗。相关成果发表于《神经元》期刊。

  • 原文来源:;https://doi.org/10.1038/s41564-020-0723-z
相关报告
  • 《美国科学家开始研发植入式微型无线疼痛控制器,通过电刺激缓解疼痛》

    • 来源专题:中国科学院文献情报生命健康领域集成服务门户
    • 编译者:陈大明
    • 发布时间:2019-11-06
    • 10月5日,美国莱斯大学和德克萨斯医学中心科学家正在开发一种可植入人体的无线神经刺激器,通过施加精准的电刺激缓解病患疼痛。据介绍,该装置的体积足够小,可被放置在支架上并在邻近中枢神经系统和周围神经系统特定区域的血管内输送,以此保证电刺激部位的精准性。该技术将有助于减少与神经刺激疗法相关的风险,并替代阿片类药物成为控制疼痛的有效途径。
  • 《美国科学家利用胶体量子点技术开发出高强度光发射器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-04
    • 近日,来自美国洛斯阿拉莫斯国家实验室(LANL)的一组研究人员克服了基于胶体量子点技术的高强度发光器件领域的关键挑战,从而产生了既可作为光激发激光器又可作为高亮度电驱动发光二极管(LED)的双功能器件。 这一进展发表在《先进材料》(Advanced Materials)杂志上,代表了电泵浦胶体量子点激光器或激光二极管的一个关键里程碑。据介绍,这是一种新型设备,其影响将跨越众多技术,包括集成电子和光子学、光学互连、芯片实验室平台、可穿戴设备和医疗诊断。 LANL化学部门的科学家、该研究团队负责人Victor Klimov指出:“对胶体量子点激光二极管的探索代表了全球范围内实现基于可溶液处理材料的电泵浦激光器和放大器的努力的一部分。这些器件一直被科学界追求要与几乎任何衬底的兼容性、可扩展性和易于与片上电子和光子学集成,包括传统的硅基电路。” 与标准LED一样,在该团队的新设备中,量子点层充当了电力驱动的光发射器。然而,由于电流密度极高(超过500安培/每平方厘米),这些设备显示出前所未有的亮度水平——超过100万坎德拉/每平方米(坎德拉测量在给定方向发射的光功率)。而这样的亮度,也使得它们非常适合于日光显示器、投影仪和交通灯等应用。 这种特殊的量子点层还表现为具有较大净光学增益的高效波导放大器。LANL研究小组通过一个功能齐全的LED型设备堆栈实现了窄带激光,该设备堆栈包含所有电荷传输层和电泵浦所需的其他元素。这一进步为人们高度期待的电抽运激光演示打开了大门,这种效果将使胶体量子点激光技术完全实现。 “驯服”胶体量子点 半导体纳米晶体或胶体量子点是用于实现激光器件(包括激光二极管)的一种极具吸引力的材料。它们可以通过中温化学技术以原子精度水平进行制备。 此外,由于量子点的尺寸较小,与电子波函数的自然范围相当,它们表现出离散的原子状电子状态,其能量直接取决于粒子的大小。这种所谓的“量子尺寸”(quantum-size)效应的结果可以用来调整激光线至特定波长,又或者设计支持多个波长激光的多色增益介质。因其低光学增益阈值和抑制激光特性,来自量子点电子态的特殊原子样光谱,还可以实现对器件温度变化的敏感性。 创新设计,解决电泵浦挑战 大多数量子点激光研究都是利用短光脉冲来激发光学增益介质,而实现电驱动量子点的激光器则是一项更具挑战性的任务。借助他们的新设备,LANL研究小组将实现功能性的量子点激光二极管。 LANL实验室主任的博士后研究员、量子点团队的首席器件专家Namyoung Ahn表示,“电气和光学器件设计是非常关键的一点,该设备的电荷注入架构必须能够产生和维持激光作用所需的非常高的电流密度。同样,它还必须表现出低光学损耗,以免抑制在薄量子点活性介质中产生的增益。” 为了提高光学增益,该团队开发了新的纳米晶体,他们称之为“紧凑的成分分级量子点”。为了促进光放大,研究人员还减少了设备的光学损耗。其中,他们重新设计了电荷注入结构,去掉了光学损耗的类金属材料,取而代之的是适当优化的低吸收率有机层。他们还设计了一种器件横截面剖面,以降低高吸收电荷传输层中的光场强度,同时增强量子点增益介质中的光场强度。 最后,为了实现激光振荡,他们所开发的器件由一个周期光栅制备的光学腔补充,该光学腔被集成到器件的一个电极中。该光栅作为所谓的分布式反馈谐振器,允许在量子点层的横向平面上循环光,能够实现多通路放大。