《美国科学家利用胶体量子点技术开发出高强度光发射器》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-04-04
  • 近日,来自美国洛斯阿拉莫斯国家实验室(LANL)的一组研究人员克服了基于胶体量子点技术的高强度发光器件领域的关键挑战,从而产生了既可作为光激发激光器又可作为高亮度电驱动发光二极管(LED)的双功能器件。

    这一进展发表在《先进材料》(Advanced Materials)杂志上,代表了电泵浦胶体量子点激光器或激光二极管的一个关键里程碑。据介绍,这是一种新型设备,其影响将跨越众多技术,包括集成电子和光子学、光学互连、芯片实验室平台、可穿戴设备和医疗诊断。

    LANL化学部门的科学家、该研究团队负责人Victor Klimov指出:“对胶体量子点激光二极管的探索代表了全球范围内实现基于可溶液处理材料的电泵浦激光器和放大器的努力的一部分。这些器件一直被科学界追求要与几乎任何衬底的兼容性、可扩展性和易于与片上电子和光子学集成,包括传统的硅基电路。”

    与标准LED一样,在该团队的新设备中,量子点层充当了电力驱动的光发射器。然而,由于电流密度极高(超过500安培/每平方厘米),这些设备显示出前所未有的亮度水平——超过100万坎德拉/每平方米(坎德拉测量在给定方向发射的光功率)。而这样的亮度,也使得它们非常适合于日光显示器、投影仪和交通灯等应用。

    这种特殊的量子点层还表现为具有较大净光学增益的高效波导放大器。LANL研究小组通过一个功能齐全的LED型设备堆栈实现了窄带激光,该设备堆栈包含所有电荷传输层和电泵浦所需的其他元素。这一进步为人们高度期待的电抽运激光演示打开了大门,这种效果将使胶体量子点激光技术完全实现。

    “驯服”胶体量子点

    半导体纳米晶体或胶体量子点是用于实现激光器件(包括激光二极管)的一种极具吸引力的材料。它们可以通过中温化学技术以原子精度水平进行制备。

    此外,由于量子点的尺寸较小,与电子波函数的自然范围相当,它们表现出离散的原子状电子状态,其能量直接取决于粒子的大小。这种所谓的“量子尺寸”(quantum-size)效应的结果可以用来调整激光线至特定波长,又或者设计支持多个波长激光的多色增益介质。因其低光学增益阈值和抑制激光特性,来自量子点电子态的特殊原子样光谱,还可以实现对器件温度变化的敏感性。

    创新设计,解决电泵浦挑战

    大多数量子点激光研究都是利用短光脉冲来激发光学增益介质,而实现电驱动量子点的激光器则是一项更具挑战性的任务。借助他们的新设备,LANL研究小组将实现功能性的量子点激光二极管。

    LANL实验室主任的博士后研究员、量子点团队的首席器件专家Namyoung Ahn表示,“电气和光学器件设计是非常关键的一点,该设备的电荷注入架构必须能够产生和维持激光作用所需的非常高的电流密度。同样,它还必须表现出低光学损耗,以免抑制在薄量子点活性介质中产生的增益。”

    为了提高光学增益,该团队开发了新的纳米晶体,他们称之为“紧凑的成分分级量子点”。为了促进光放大,研究人员还减少了设备的光学损耗。其中,他们重新设计了电荷注入结构,去掉了光学损耗的类金属材料,取而代之的是适当优化的低吸收率有机层。他们还设计了一种器件横截面剖面,以降低高吸收电荷传输层中的光场强度,同时增强量子点增益介质中的光场强度。

    最后,为了实现激光振荡,他们所开发的器件由一个周期光栅制备的光学腔补充,该光学腔被集成到器件的一个电极中。该光栅作为所谓的分布式反馈谐振器,允许在量子点层的横向平面上循环光,能够实现多通路放大。

相关报告
  • 《首次实现电驱动胶体量子点受激发射的光放大》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-17
    • 二十多年来,研究人员一直在尝试通过电泵浦实现胶体量子点激光,毕竟这是其在实际技术中广泛应用的先决条件。虽然传统的激光二极管在电激发下可以产生单色性比较好的相干光,并在实际生活中广泛应用。但它们也有不足之处,比如可扩展性有待提高、发光波长的带宽有待增加以及不易于硅技术兼容,这些因素限制了它在微电子领域的应用。上述问题使得人们在高度灵活和易于扩展的解决方案领域寻找替代品——可加工材料。 因此,化学制备的胶体量子点因其成本低廉、可扩展性强、光学增益阈值低、热稳定性好和发光波长可调谐的优点逐渐走进科学家的视野。 然而,目前仍存在多种挑战阻碍该技术的发展,包括增益有源多载流子态的快速俄歇复合,激光所需的高电流密度下纳米晶体膜的稳定性差以及在复杂的电驱动器件中难以获得净光学增益等。 为了解决这些问题,经过多年努力,美国洛斯阿拉莫斯国家实验室的研究人员成功利用基于溶液制造半导体纳米晶体的电驱动装置实现了光放大。其中半导体纳米晶体是通过化学合成制成的微小半导体物质,通常被称为胶体量子点。这项研究为制作一种全新的电泵浦激光设备——高度灵活、溶液可加工的激光二极管奠定了基础。人们通过该技术可以在任何晶体或非晶体衬底上制备,而不需要复杂的真空生长技术或高度控制的洁净室环境。 图 ccg-QDs的光学和光电特性 实验室研究员、量子点研究计划的负责人Victor Klimov表示,通过电驱动胶体量子点实现光放大的能力,已经从他们之前几十年对纳米晶体合成、其光物理性质以及量子点器件的光学和电学设计的研究中出现。他们所设计的“成分渐变”型胶体量子点具有光学增益寿命长、增益系数大以及激光阈值低等特性,这些特性使得其成为一种完美的激光材料。利用溶液制造纳米晶体实现电驱动光放大的方法可能有助于解决在同一硅芯片上集成光子和电子电路的长期挑战,并有望推进照明、显示、量子信息、医疗诊断、化学传感等领域的发展。 然而实现电驱动胶体量子点激光仍需要解决许多技术难题。量子点不仅需要发光,还需要通过受激发射使产生的光子倍增。通过将量子点与光学谐振器相结合,使发射的光往复通过增益介质,这种效应可以转化为激光振荡或激光。 在量子点中,受激发射与非辐射俄歇复合存在竞争,这是目前激光材料的主要挑战。因此,洛斯阿拉莫斯团队设计了一种非常有效的方法,通过在量子点内部引入精心设计的成分梯度来抑制非辐射俄歇复合,从而促进受激辐射的实现。 与此同时,要想实现激光出射,还需要非常高的电流密度,但这有可能对设备造成损害。洛斯阿拉莫斯主任、该项目主要负责人Namyoung Ahn表示,一个典型的量子点发光二极管在电流密度不超过每平方厘米1安培的情况下工作,激光的实现通常需要每平方厘米几十到几百安培,这有可能会使设备过热而发生故障,该问题一直阻碍电泵浦激光的实现。 为了解决过热问题,该团队将电流限制在空间和时间域中,最终减少了产生的热量,同时改善了与周围介质的热交换。他们在器件堆栈中加入了一个带有小电流聚焦孔径的绝缘中间层,并使用短电脉冲(持续时间约为1微秒)来驱动LED。最终该器件的电流密度高达每平方厘米约2000安培,足以在多个量子点光学跃迁之间产生强大的宽带光学增益。 实验室博士后研究员Clément Livache表示,更深层的挑战则是在包含各种电荷导电层的完整LED器件中实现光学增益和光学损耗之间的平衡。为此,他们在器件中增加了一堆介电双层,形成了所谓的分布式布拉格反射器。使用布拉格反射器作为底层衬底,研究人员能够控制电场在器件上的空间分布,并对其进行调制,从而降低光学损耗电荷导电层中的场强度,并增强量子点增益介质中的场强度。 通过这些创新,该团队最终实现了学术界几十年来追求的目标——电泵浦胶体量子点的放大自发发射(ASE)。ASE型量子点LED可以用作窄带光源,在显示器、投影仪、成像等领域具有很高的应用价值。目前,研究团队正致力于用电泵浦量子点实现激光振荡,以及器件的光谱覆盖范围,重点是红外波长范围内的电驱动光放大。
  • 《科学家用激光开发出更低成本的高效水处理技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-12-21
    • 清洁用水,正成为全球范围日益受到重视的一大资源利用问题。为了确保不断增长的全球人口能够获得清洁的水,开发新的水处理方法也被提上了日程。 你可能想不到,当一种叫做高铁酸盐的铁暴露在特殊光线(激光)下并发生一系列的化学反应,或将成为水处理技术的一大加持。据悉,高铁酸盐产生的有毒副产物比氯等化学物质更少,而且可能比复杂的臭氧处理系统更便宜,更容易部署。 这种新处理手段比较棘手的问题就在于,它需要与其他化合物结合或被光能激发,才能使高铁酸盐发挥最佳的水消毒净化效果。 近日,美国罗德岛大学(URI)的一组研究人员使用一种涉及超高速激光和X射线脉冲的技术,揭示了高铁酸盐暴露在可见光和紫外线下发生化学反应的新细节。相关研究结果发表在《美国化学学会杂志》(JACS)上,可以帮助研究人员优化其在水处理中的应用。 罗德岛大学化学助理教授、该研究的通讯作者Dugan Hayes表示,高铁酸盐的光激活此前从未被详细研究过,这项研究中他们的团队首次揭示了其中的一些光物理性质。 高铁酸盐是一种氧化剂,这意味着它可以通过“窃取”污染物的电子来分解污染物。高铁酸盐本身是一种相当强的氧化剂,但当被光激发时它会产生一种更强的氧化剂,称为Fe(V)(或Fe5+)。然而,在这项新研究之前,人们并不知道生产Fe(V)需要多少能量,以及可以生产多少能量。 为了明确这些方面,Dugan Hayes实验室的博士生Cali Antolini牵头开展了一项瞬态吸收光谱实验,这其实是一种利用超高速激光脉冲研究光化学反应的技术。 Cali Antolini借助罗德岛大学的设施,利用紫外线和可见光脉冲进行了实验。此外,她还在芝加哥阿贡国家实验室的先进光子源大型同步加速器平台上使用X射线进行了类似的实验。 在该实验中,最初的脉冲负责启动反应,而后续的脉冲则负责探测反应的过程。激光脉冲的速度大约为千万亿分之一秒,这让研究人员可以详细记录哪怕是最短时间内的反应产物。 研究结果表明,高铁酸盐与高活性Fe(V)的转化率约为15%。这项研究还发现,从紫外光谱延伸到可见光光谱的一系列波长应该能够产生Fe(V)。 研究人员表示,这一重要发现有两个原因:首先,可见光产生紫外光所需的能量更少,这使得高铁酸盐激发的能量效率比之前假设的更高。此外,可见光在浑浊的水中散射较少,这意味着Fe(V)可以在各种各样的水条件下产生。 该研究还有助于找到一种能够弥合大型城市水处理系统和小型农村水处理系统之间“清洁水差距”(clean water gap)的方法。高铁酸盐净化系统的建造更小型化、成本更低,相比昂贵而复杂的臭氧处理系统而言实用性有望得以提升。此外,高铁酸盐也有望减少对氯等刺激性化学物质的依赖,甚至可能消除氯无法去除的顽固污染物,其中包括在美国各地水系统中越来越常见的化学物质——全氟/多氟烷基物质(PFAS)。但在高铁酸盐系统被广泛应用之前,科学家们需要更好地了解高铁酸盐的化学性质。 这项研究的合著者、罗德岛大学土木与环境工程助理教授Joseph Goodwill表示:“高铁酸盐中强氧化剂的形成很难从机理上理解,这阻碍了工艺优化和在水处理应用中的全面实施。而这篇论文中得出的结论提高了我们对高铁酸盐体系的基本理解,为这一应用打开了大门。” 研究人员希望这些关于高铁酸盐光化学工作原理的新发现将有助于扩大铁基水处理的使用。目前这项研究已经得到了美国能源部(DE-SC0019429和DE-AC02-06CH11357)和美国国家科学基金会(2046383)的支持。