《中国科学院青岛能源所成功制备柔性载硫体用于高性能锂硫电池》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-10-29
  • 近年来,随着便携式电子装备、电动汽车的推广和应用,当今社会对电化学储能器件提出了新的挑战。传统的锂离子电池受制于电极材料较低的理论容量,难以满足高能量密度储能系统的要求。基于多电子转换反应的锂硫电池由于具有超高的比能量,并且原材料来源丰富、价格低廉、低毒无害,被认为是最具潜力的下一代高能量电池体系之一,成为当前电化学储能领域的重要研究方向和热点。

    然而,锂硫电池固有的自身缺陷阻碍了其大规模的使用。一方面,由于硫单质及还原产物多硫化合物(Li2S/Li2S2)的导电率低,导致锂硫电池中活性物质利用率低,倍率性能差;另一方面,在充放电过程中产生的可溶性多硫化合物,会导致“穿梭效应”的出现。因此开发具有高导电性,同时对多硫化合物具有较强吸附能力的正极材料是获取高性能锂硫电池的关键所在。

    针对以上存在的难题,中国科学院青岛生物能源与过程研究所先进储能材料与技术研究组基于正极载硫体的改性,制备了一种“类钢筋混凝土”结构的柔性载硫体,实现了锂硫电池的高载硫量、高硫利用率和长循环寿命。以石墨烯薄膜为集流体,木质素纤维与碳纳米管为复合载体,该柔性载硫体具有优异的导电率及聚硫化合物锚定能力,同时结合了石墨烯的去极化特性。以该集流体组装的锂硫电池,0.1C下电池容量高达1632.5 mAh g-1(97.5%的理论容量),1.0C下循环500圈容量保持率为86.5%。即使在9.2 mg cm-2高载硫量下,该锂硫电池依然表现出优异的循环稳定性,0.5C下经过100圈循环容量保持率达91.5%。该工作对提高锂硫电池硫利用率和循环寿命提供了一种新的思路。

    相关成果已发表在Journal of Materials Chemistry A上(Tao Liu, Jianfei Wu*, et al. doi: 10.1039/C8TA08521H)。此外,研究组在富锂锰正极材料、硫化物固体电解质等方面也取得新进展,相关成果已在Electrochimica Acta (2018, 269: 422-428), Advanced Materials Interfaces (2018:1800783(1-8)), Journal of Alloys and Compounds(2018, 744: 41-50; 2017, 727: 1136-1141)等杂志发表。研究成果得到国家自然科学基金、中国科学院“相关人才计划”项目、青岛能源所-大连化物所融合项目的支持。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=316583
相关报告
  • 《青岛能源所制备出新型纳米复合材料用于锂硫电池隔膜改性》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-05-24
    • 锂硫电池,以单质硫作为正极,金属锂为负极,理论比能量可达2600Wh kg -1 ,是传统锂离子电池的3~5倍,且由于单质硫在地球中储量丰富、价格低廉,因此被认为是最具发展潜力的下一代高比能量二次电池体系之一。然而,由于锂硫电池在充放电过程中产生的聚硫化物易溶于电解液,并通过隔膜到达金属锂负极,进而产生严重的“穿梭效应”,引起活性物质损失、硫化物沉积不均,导致电池循环性能变差。    基于以上问题,青岛能源所先进储能材料与技术研究组研究人员从锂硫电池隔膜改性入手,在碳纳米管(CNT)表面引入过渡金属化合物CoNi 1/3 Fe 2 O 4 (CNFO),成功制备出CNFO@CNT纳米复合材料,并通过真空抽滤方式将其均匀涂布到商用隔膜表面。受益于CNFO的强极性吸附作用和CNT的导电作用,该改性隔膜可以有效吸附正极溶出的聚硫化合物并加以循环再利用。  将CNFO@CNT改性隔膜应用于锂硫电池中,实验结果证明在2.0 C下常温循环250圈后容量保持率高达84%。不仅如此,研究人员将改性后的锂硫电池置于高温60℃中测试其循环稳定性,发现在CNFO较强的化学吸附作用下,0.5 C经过100圈循环后,容量保持率依然能够达到78%,并保持98%以上的库伦效率。该改性材料相比CNT改性隔膜,无论是常温还是60℃高温,对锂硫电池的倍率及循环稳定性都有较大的提升。    相关成果已发表在ACS Applied Materials & Interfaces(Tao Liu, et al,Jianfei Wu. doi:10.1021/acsami.9b02136)上。此外,以固体电解质取代传统电解液的全固态锂硫电池可以从根本上解决聚硫化物的溶解难题,研究组在目前开发的锂硫电池和高电导率硫化物固体电解质的基础上,下一步将继续开发高性能锂硫全固态电池,相关成果已在J.Mater.Chem.A(2018, 6, 23486–23494),Electrochim. Acta(2019, 295, 684-692)等期刊发表,研究成果得到了中国科学院率先行动相关人才计划、国家自然科学基金、青岛能源所-大连化物所融合基金项目的支持。
  • 《中国科学院化学所万立骏JACS:用于高性能钾离子电池负极的工程空心碳体系结构》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-21
    • 作为锂离子电池(LIBs)的廉价替代品,钾离子电池(KIB)正在引起越来越多的研究兴趣。KIB受益于K+/K氧化还原对较低的氧化还原(-2.93V vs SHE),接近Li+/Li的-3.04V(vs SHE)的值,和远低于Na+/Na(-2.71V vs SHE),这确保了宽电压窗口和高能量密度。同时,作为广泛使用的材料的碳基负极中K+的嵌入电位位于?0.2V与K+/K之间。这样的电位可以避免钾金属镀层形成枝晶,从而确保更安全的充电/放电过程。然而,由于K+的大尺寸,能够维持重复的K+的稳定的电极材料插入/脱嵌循环极其不足。 成果简介 近日,在中国科学院化学所万立骏教授和曹安民教授的带领下,与美国阿贡国家实验室和中国科学院物理研究所合作,通过结构工程开发了用于KIB的高性能负极电极材料,所述电极材料为空心互连结构,形状类似于神经元细胞网络。使用三聚氰胺-甲醛树脂作为原始材料,根据树脂在其热解过程中的化学性质确定了两步结构转变:在初始加热阶段,醚键的剪切会软化树脂骨架,然后在较高温度下,强烈气体的释放可以将四角形构建块膨胀成中空结构,形成一种有趣的HINCA型材料,该材料不仅能够促进K+/e-的传输,而且还确保用于稳定的钾化/去透明过程的弹性结构。当用作KIB负极时,电极能提供在0.1C下340mAh g-1超常的可逆容量,卓越的循环稳定性(在0.5C下超过150次循环几乎没有容量衰减)和优良的库仑效率(初始循环为72.1%和在循环中超过99%)。相关成果以题为“Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode”发表在了上。 团队证明了碳的结构工程为实现KIBs的高容量和稳定负极提供了有效途径。使用MF树脂作为原材料,成功地通过简单的热解过程将这种聚合物前体转化为空心相互连接的神经元样碳结构。这种独特的碳结构和中空特性一起确保了高度稳定和有效的结构,以实现用于KIB的高性能负极材料。制备的HINCA型电极能够在0.1C下提供340mAh g-1的可逆容量,具有极好的循环稳定性(在0.5C下循环150次无容量衰减)和卓越的库仑效率(初始循环72.1%,长时间循环超过99%)。团队的工作不仅为以前未探索的碳空心化机制提供了见解,有可能进行大规模生产,而且为功能材料向KIB高性能负极材料的结构设计和优化开辟了新的途径。 文献链接:Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode(JACS, 2018, DOI:10.1021/jacs.8b02178)