《EAST放电中低杂波与电子回旋波协同产生高约束H模的机理研究获进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-07-31
  •         近日,中国科学院合肥物质科学研究院等离子体物理研究所研究员徐国盛团队通过研究EAST典型的长脉冲放电等离子体,在ECRH关闭之后能量约束伴随内感缓慢大幅度降低的现象,揭示了低杂波和电子回旋波协同带来高约束的机制。并对电子热输运及其分布刚性进行了研究,加深了对EAST长脉冲放电中的能量约束特性的物理理解。这些新结果得到了国际同行的积极评价。该成果已发表在国际学术期刊Nuclear Fusion [H. F. Du, et al. Nucl. Fusion 58 (2018) 066011]上。

      要获得高约束的等离子体需要降低的热扩散和增强的等离子体辅助加热。在该文研究的EAST放电中,芯部的电子回旋波预加热改变了电子温度分布,由于低杂波功率沉积通过朗道阻尼条件依赖于电子温度分布,从而使得低杂波的沉积也在芯部峰化。EAST等离子体在低杂波芯部加热(即芯部电子加热)占主导的情况下,功率平衡计算显示电子热扩散在芯部比较低,因此芯部约束较好。此外,芯部峰化的低杂波沉积也使得低杂波驱动的电流在芯部峰化,这里低杂波驱动电流是主要的电流成分,因此使得等离子体内感较高。较高的内感可以改善等离子体约束并增加归一化比压极限。

      以上研究成果是等离子体所相关科研人员通力合作的结果,相关研究得到了国家磁约束核聚变能发展研究专项、国家自然科学基金、中国科学院青年创新促进会、中国科学院前沿科学重点研究项目以及中国科学院王宽诚率先人才计划“卢嘉锡国际团队”项目资助。本文进行的计算工作是在等离子体所的SHENMA高性能计算集群上进行的。

相关报告
  • 《中国科学院精密测量院在液体太赫兹波产生机制的理论研究方面获进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-04-18
    • 太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。 近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的液相体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。 近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。 上述成果是卞学滨团队在液相强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。
  • 《中国科学院(CAS)阿秒X射线脉冲产生机制研究获进展》

    • 编译者:张宇
    • 发布时间:2025-06-24
    • 阿秒光源作为研究量子系统亚飞秒尺度电子动力学的关键工具,面临实现高强度孤立X射线脉冲的挑战。X射线自由电子激光(XFEL)能够产生超短超强的激光脉冲,是基于电子直线加速器的先进光源。增强型自放大自发辐射是FEL中产生超短脉冲的主流方法,该方法通过增强电子束的局部峰值流强来产生阿秒量级的超快X射线。为实现阿秒X射线与外部泵浦激光精确同步,理想方案是采用超快激光对电子束进行调制,但这一方案的主要问题是调制激光会在主峰旁边产生多个小峰,严重降低阿秒脉冲的信噪比。 针对上述问题,中国科学院上海高等研究院研究员冯超团队联合上海光学精密机械研究所副研究员黄志远团队,提出利用气压梯度空芯光纤良好的宽谱传输能力与可调控的色散/非线性特性,将多周期中红外激光压缩至亚周期尺度,并利用该亚周期激光调制电子束来获得孤立的电流尖峰,且在波荡器中实现高信噪比孤立阿秒FEL脉冲的产生。同时,该亚周期激光与阿秒FEL自然同步,为阿秒泵浦-探测提供理想的工具。 研究发现,气压梯度空芯光纤核心优势在于通过精确选择气体介质与优化气压梯度,可实现非线性与色散特性的灵活调控。基于孤子自压缩效应,激光脉冲在波导反常色散与自相位调制的协同作用下可实现高效压缩。模拟结果表明,采用气压梯度空芯光纤可将中心波长4μm、脉冲能量640μJ、脉冲长度40fs的输入脉冲压缩至5.7fs(约0.4个光周期)。 同时,研究显示,气压梯度空芯光纤产生的亚周期激光与FEL中电子束发生相互作用,使电子束产生近乎单周期的能量调制,进而产生单尖峰的电流调制。进一步,该电子束被传输到FEL放大器中,最终辐射输出高强度、高信噪比的孤立X射线脉冲,其中心波长为1nm,脉宽约580as,峰值功率达30GW。这种高强度超短脉冲可为价电子动力学探测、光电发射延迟测量以及量子隧穿时间表征等前沿科学研究提供新工具。 该研究实现了空芯光纤产生的超强亚周期脉冲与阿秒FEL脉冲自然的时间同步性,可基于X射线自由电子激光大科学装置构建高精度红外激光泵浦-阿秒X射线探测实验平台,并有望应用于超快科学领域。 近期,相关研究成果以Isolated attosecond free-electron laser based on a sub-cycle driver from hollow capillary fibers为题,发表在《超快科学》(Ultrafast Science)上。研究工作得到国家自然科学基金委员会和中国科学院的支持。(DOI:10.34133/ultrafastscience.0099)