《中国科学院(CAS)阿秒X射线脉冲产生机制研究获进展》

  • 编译者: 张宇
  • 发布时间:2025-06-24
  • 阿秒光源作为研究量子系统亚飞秒尺度电子动力学的关键工具,面临实现高强度孤立X射线脉冲的挑战。X射线自由电子激光(XFEL)能够产生超短超强的激光脉冲,是基于电子直线加速器的先进光源。增强型自放大自发辐射是FEL中产生超短脉冲的主流方法,该方法通过增强电子束的局部峰值流强来产生阿秒量级的超快X射线。为实现阿秒X射线与外部泵浦激光精确同步,理想方案是采用超快激光对电子束进行调制,但这一方案的主要问题是调制激光会在主峰旁边产生多个小峰,严重降低阿秒脉冲的信噪比。

    针对上述问题,中国科学院上海高等研究院研究员冯超团队联合上海光学精密机械研究所副研究员黄志远团队,提出利用气压梯度空芯光纤良好的宽谱传输能力与可调控的色散/非线性特性,将多周期中红外激光压缩至亚周期尺度,并利用该亚周期激光调制电子束来获得孤立的电流尖峰,且在波荡器中实现高信噪比孤立阿秒FEL脉冲的产生。同时,该亚周期激光与阿秒FEL自然同步,为阿秒泵浦-探测提供理想的工具。

    研究发现,气压梯度空芯光纤核心优势在于通过精确选择气体介质与优化气压梯度,可实现非线性与色散特性的灵活调控。基于孤子自压缩效应,激光脉冲在波导反常色散与自相位调制的协同作用下可实现高效压缩。模拟结果表明,采用气压梯度空芯光纤可将中心波长4μm、脉冲能量640μJ、脉冲长度40fs的输入脉冲压缩至5.7fs(约0.4个光周期)。

    同时,研究显示,气压梯度空芯光纤产生的亚周期激光与FEL中电子束发生相互作用,使电子束产生近乎单周期的能量调制,进而产生单尖峰的电流调制。进一步,该电子束被传输到FEL放大器中,最终辐射输出高强度、高信噪比的孤立X射线脉冲,其中心波长为1nm,脉宽约580as,峰值功率达30GW。这种高强度超短脉冲可为价电子动力学探测、光电发射延迟测量以及量子隧穿时间表征等前沿科学研究提供新工具。

    该研究实现了空芯光纤产生的超强亚周期脉冲与阿秒FEL脉冲自然的时间同步性,可基于X射线自由电子激光大科学装置构建高精度红外激光泵浦-阿秒X射线探测实验平台,并有望应用于超快科学领域。

    近期,相关研究成果以Isolated attosecond free-electron laser based on a sub-cycle driver from hollow capillary fibers为题,发表在《超快科学》(Ultrafast Science)上。研究工作得到国家自然科学基金委员会和中国科学院的支持。(DOI:10.34133/ultrafastscience.0099)

相关报告
  • 《中国科学院精密测量院在液体太赫兹波产生机制的理论研究方面获进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-04-18
    • 太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。 近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的液相体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。 近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。 上述成果是卞学滨团队在液相强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。
  • 《中国科学院近代物理研究所科研人员对空间引力波探测信号识别研究获进展》

    • 编译者:张宇
    • 发布时间:2025-01-03
    • 中国科学院上海天文台和中国科学院大学等的科研人员在空间引力波探测信号识别领域取得进展。该团队开发出基于深度学习的创新方法,可高效探测和分析空间引力波探测器的极端质量比旋近(EMRIs)信号,将为未来空间引力波探测与数据分析提供参考。相关研究成果在线发表在《中国科学:物理、力学和天文学》上。 自2015年首次探测到引力波以来,地面引力波探测器已探测到超过100例引力波事件。这些地面探测器的探测频段在几十到几百赫兹之间。为探索低频引力波源,科学界正积极筹备空间引力波探测计划。 空间引力波探测的重要目标之一是极端质量比旋近系统。这类系统由一颗恒星级黑洞围绕中心的超大质量黑洞旋转而成。研究EMRIs系统,能够帮助科学家精确检验广义相对论,绘制超大质量黑洞周围的时空图,验证“无毛定理”,有望揭示超大质量黑洞的质量分布及其与宿主星系的共同演化历史。 而EMRI信号的探测和分析面临挑战。这类信号可持续数年之久,且特征复杂、强度微弱,需要大量的计算资源来生成高精度波形模板。传统的匹配滤波和贝叶斯参数估计方法需要海量的EMRI波形模板来覆盖多维参数空间且计算成本高昂。更棘手的是,EMRIs信号的精确建模困难,而传统方法依赖于模板的准确性。 针对上述挑战,该团队创新性地提出了基于深度学习的完整解决方案。在时频域进行信号分析时,团队设计的二层卷积神经网络展现出优异的探测性能。对信噪比50至100范围内的信号,在1%的误报率下可实现96.9%的真实探测率。为验证这一方法的普适性,科研人员进行模板依赖性测试。结果表明,即使注入与训练数据不同模型生成的信号,该方法仍可以保持稳定的探测性能。这表明,该方法对理论模型的依赖程度较低,并提升了实际探测的应用价值。 进一步,在探测到信号后,该团队采用UNet网络在噪声中提取EMRI信号,并通过神经网络实现关键参数的精确估计。超大质量黑洞的质量估计准确率达99%,自旋参数估计准确率达92%。同时,神经网络可以准确预测轨道初始偏心率等参数。这为未来的引力波数据分析提供了新思路。 论文链接 (DOI:10.1007/s11433-024-2500-x)