《新型半导体纳米材料实现高效光化学转化》

  • 来源专题:半导体工艺技术
  • 编译者: shenxiang
  • 发布时间:2018-12-07
  • 近日,科技日报记者从中国科学技术大学获悉,该校俞书宏教授课题组与合作者合作,设计了一种“脉冲式轴向外延生长”方法,成功制备了尺寸、结构可调的一维胶体量子点-纳米线分段异质结,利用ZnS纳米线对CdS量子点的晶面选择性钝化作用,可同时实现量子点表面的有效钝化和光生载流子的有效转移。该研究成果近日发表在《自然·通讯》杂志上。

    设计新型半导体纳米材料以捕获太阳能并实现高效光化学转化,是解决当前全球能源与环境危机的一种理想途径之一。胶体量子点具有尺寸可调的光学和电学特性,因而作为一种重要的光催化剂材料在太阳能转化领域备受青睐。

    然而,胶体量子点的表面悬挂键会导致大量的陷阱态,从而将载流子强烈局域化并阻碍其进一步参与表面化学反应。目前,如何同时实现量子点表面钝化和电荷转移仍然面临挑战。

    研究团队基于此前他们在液-固-固相催化生长一维纳米异质结构的工作基础,提出了一种“脉冲式轴向外延生长”合成胶体半导体纳米晶的新策略。理论计算表明,Zn和Cd原子在Ag2S固相催化剂中的嵌入能差异使得在Cd前驱物存在时能够优先生长CdS,因而可通过控制Cd前驱物的加入调控CdS量子点-ZnS纳米线的结构参数。

    该方法具有高度的灵活性,可对量子点的尺寸、数量、间距和晶相进行精准控制。研究者发现ZnS纳米线选择性钝化CdS量子点晶面以后,降低了载流子局域化程度,延长了载流子寿命,有利于载流子迁移至催化剂表面进行反应。

    这项研究为今后设计开发新型高效光催化剂提供了新途径。此外,该合成策略还有望拓展到其他胶体量子点体系,并通过完善合成方法实现其结构参数的精细调控,预期在激光、单光子源以及单电子探测等方面展现出独特的应用价值。

相关报告
  • 《河南大学纳米材料工程研究中心发布纳米材料制备化学研究方向》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-03-14
    • 河南大学纳米材料工程研究中心(简称“中心”)依托节能减阻添加剂教育部工程中心、河南省纳米材料工程技术研究中心及河南省纳米杂化材料工程研究中心组建,纳米杂化材料应用技术国家地方联合工程研究中心由国家发展和改革委员会于2015年12月批准建设。 研究方向 中心以国家战略和市场需求为导向,研究纳米材料宏量制备及应用中的基础科学问题和关键技术难题,发展高性能、多功能纳米材料的规模化制备技术,形成自主知识产权和关键核心技术。 中心设立纳米材料制备化学、纳米润滑材料、能源与环境催化以及有机功能材料等四个研究室和一个产业化中试基地。 纳米材料制备化学研究室 主要致力于纳米材料的制备化学研究,期望通过化学方法制备具有特种功能的纳米材料并开展其性能及应用研究。主要研究方向包括以下: ★储能与能量转换纳米材料 锂/钠离子电池电极材料 超级电容器材料 吸波材料 ★生物医用纳米材料 SiO2基纳米生物材料 复合纳米抗菌材料 仿生功能材料 ★纳米材料的宏量制备技术 少层石墨烯宏量制备 锂离子电池材料宏量制备 纳米润滑材料研究室 主要开展新型节能减摩材料和技术的应用基础和应用研究。主要研究方向包括以下: ★环境友好纳米添加剂 可分散性纳米微粒制备 纳米微粒润滑添加剂摩擦学 水基金属加工液添加剂 润滑材料组分、结构与性能演变规律 ★纳米复合薄膜 分子有序超薄膜及其摩擦学 有机、无机复合减摩抗磨涂层 仿生结构表面构建及性能调控 ★纳米复合钻井液 能源与环境催化研究室 长期致力于纳米光功能材料的设计合成及在光催化分解水、CO2光还原、有机污染物消除中的应用。主要研究方向包括以下: ★半导体光催化 缺陷态TiO2 硫属化合物 有机聚合物 理论计算 ★稠油降粘 稠油催化改质 稠油乳化降粘 ★生物电化学 双极电化学 电化学酶促合成 有机功能材料研究室 主要研究方向包括以下: ★ 螺烯化学 噻吩螺烯与双螺烯的设计与合成 噻吩螺烯与双螺烯的手性 手性噻吩螺烯与双螺烯的光电特性 类螺烯结构的设计与构筑 ★ 有机功能材料 基于并三噻吩的有机薄膜场效应晶体管(OFET) 基于二噻吩并噻咯的聚合物有机太阳能电池(OSC) 基于噻吩螺烯与双螺烯的自组装行为与纳微特性 基于环状四联噻吩的树枝状化合物的合成与物性 ★ 有机光化学 噻吩螺烯与双螺烯的光化学合成 稠合噻吩的敏化与光物理 荧光化学传感器 中试基地 主要研究方向包括以下: ★纳米材料制备化学 聚合物基纳米复合材料 低品油气资源开采纳米材料 纳米杂化阻燃剂 重金属污染土壤修复剂 节能减阻添加剂 ★纳米材料规模化制备 传质与梯度控制合成 纳米材料的纯化与分离 干燥、捕集与造粒 废水处理与资源化 随着技术开发与产业化工作的不断深化,河南大学纳米材料工程研究中心中试基地,逐步形成了以公司为工程技术开发核心,以国家工程中心为应用基础研究平台,以产业技术创新平台,为公共服务平台,以专业化众创空间为孵化企业培育基地,以纳米材料产业园为规模化企业产业化基地的全链式协同创新运营模式。 抢滩纳米材料前沿,实现“芯”突破 此前,500nm以下规格的电子级球形二氧化硅基本依赖进口,是我国高端电子封装制造的“卡脖子”材料,破解这一难题,对我国芯片产业链实现国产化,确保我国电子信息产业安全具有重要战略意义。 而解决这一尴尬局面的,正是河南大学纳米材料工程研究中心。这个“摸着石头过河”的研究中心,建成了全国唯一一家同时拥有小试、中试和工程验证试验平台及材料性能测试和评价实验平台的纳米材料与技术孵化基地。 针对高端电子封装材料的需求,中心采用液相法制备粒径可控的电子级球形二氧化硅,实现二氧化硅在微/纳米尺寸下的可控制备。 “项目通过原料纯化、反应条件调控和核心设备的研制,已实现20、50、100纳米的产业化,解决了我国依赖进口的尴尬局面。”中心总工程师张治军介绍,电子级球形SiO2实现进口替代,为芯片产业链的国产化战略实施提供基础原材料,确保了我国电子信息产业安全。 科技成果实现技术转化并最终实现产业化,才能真正服务于产业链升级。目前,研发团队正在思考,如何把纳米材料作为核心,上面延伸到原料,下至终极用户,完善产业链,更好地为国家做贡献。
  • 《第2卷:功能材料的纳米线和纳米材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-09-17
    • 纳米线,纳米电极,纳米带,纳米棒…是近年来引起人们极大兴趣的一类新型准一维材料。这些非碳基材料已被证明具有优越的电气、光学、机械和热性能,可作为纳米科学技术的基本构件,从化学和生物传感器、场效应晶体管到逻辑电路。利用半导体纳米线构建的纳米电路在2001年被《科学》杂志宣布为“科学上的突破”。《自然》杂志最近发表了一篇报告,声称“纳米线、纳米棒、纳米晶须,不论你怎么称呼它们,它们都是纳米技术中最热门的特性”(《自然》,419(2002)553)。毫无疑问,基于纳米线的准一维材料将成为未来几十年研究的新焦点。这两卷参考,纳米线和纳米材料:材料,性能和设备,提供了一个全面的介绍领域和回顾研究的现状。 功能材料的第二卷,纳米线和纳米材料涵盖了广泛的材料系统,从功能氧化物(如氧化锌,SnO2和In2O3),结构陶瓷(如MgO, SiO2和Al2O3),复合材料(如Si-Ge, SiC- SiO2),到聚合物。本卷的重点是基于功能材料的纳米线和纳米材料的合成、性能和应用。首先将介绍由功能性氧化物纳米线和纳米obelts制成的新型器件和应用,展示其独特的性能和应用。本文的主要内容是功能氧化物的纳米线和纳米氧化物的合成和性质。最后将介绍硫化物纳米线、复合纳米线和聚合物纳米线。