《第2卷:功能材料的纳米线和纳米材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-09-17
  • 纳米线,纳米电极,纳米带,纳米棒…是近年来引起人们极大兴趣的一类新型准一维材料。这些非碳基材料已被证明具有优越的电气、光学、机械和热性能,可作为纳米科学技术的基本构件,从化学和生物传感器、场效应晶体管到逻辑电路。利用半导体纳米线构建的纳米电路在2001年被《科学》杂志宣布为“科学上的突破”。《自然》杂志最近发表了一篇报告,声称“纳米线、纳米棒、纳米晶须,不论你怎么称呼它们,它们都是纳米技术中最热门的特性”(《自然》,419(2002)553)。毫无疑问,基于纳米线的准一维材料将成为未来几十年研究的新焦点。这两卷参考,纳米线和纳米材料:材料,性能和设备,提供了一个全面的介绍领域和回顾研究的现状。

    功能材料的第二卷,纳米线和纳米材料涵盖了广泛的材料系统,从功能氧化物(如氧化锌,SnO2和In2O3),结构陶瓷(如MgO, SiO2和Al2O3),复合材料(如Si-Ge, SiC- SiO2),到聚合物。本卷的重点是基于功能材料的纳米线和纳米材料的合成、性能和应用。首先将介绍由功能性氧化物纳米线和纳米obelts制成的新型器件和应用,展示其独特的性能和应用。本文的主要内容是功能氧化物的纳米线和纳米氧化物的合成和性质。最后将介绍硫化物纳米线、复合纳米线和聚合物纳米线。

相关报告
  • 《碳纳米管:个性十足的神奇材料》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-27
    •   近日,中国科学技术大学化学与材料学院杜平武教授课题组,首次利用纳米管稠环封端“帽子”模板,构建出纵向切割的纳米管弯曲片段。这种通过三个弯曲型分子连接两个石墨烯单元的方法,可直接得到纳米笼状结构,为构建封端锯齿型碳纳米管提供了新思路。相关研究成果发表在最新一期《德国应用化学》上。   无独有偶。几乎在同时,以研制出世界上第一颗原子弹而闻名于世的洛斯阿拉莫斯实验室的研究人员,使用功能化碳纳米管生产出首个能在室温下使用通信波长发射单光子的碳纳米管材料。神奇材料碳纳米管,为何如此受各国科学家追捧?   空间结构像“挖空的足球”   1985年,“足球”结构的C60一经发现即吸引了全世界的目光。将“足球”挖空,保持表面的五角和六角网格结构,再沿着一个方向扩展六角网格,并赋予平面网格以碳—碳原子和共价键,就形成了具有中空圆柱状结构的碳纳米管。   碳纳米管是一种具有特殊结构的一维量子材料。其主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持固定的距离,约0.34纳米,直径一般为2—20纳米。   “可以将碳纳米管联想为头发丝,而实际上它的直径只有头发丝的几万分之一,即几万根碳纳米管并排起来才与一根头发丝相当。”杜平武教授告诉科技日报记者,作为典型的一维纳米结构,单层碳原子和多层碳原子网格卷曲而成的单壁与多壁碳纳米管,直径通常为0.8—2纳米和5—20纳米,目前报道的最细碳纳米管直径可小至0.4纳米。   杜平武告诉记者,碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管。若依其结构特征,碳纳米管则可分为扶手椅形纳米管和锯齿形纳米管等几种类型。   制备方法是挑战   “通常的碳纳米管制备方法主要有电弧放电法、激光烧蚀法、化学气相沉积法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。”杜平武告诉记者,电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现的碳纳米管。“这种方法比较简单,但很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层碳纳米管。”   “随后科研人员又发展出了化学气相沉积法,在一定程度上克服了电弧放电法的缺陷,得到的碳纳米管纯度比较高,但管径不整齐,形状不规则。”杜平武说,后续逐步发展起来的固相热解法等,均受限于环境和条件。   “碳纳米管的制备过程与有机合成反应类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅形纳米管或锯齿形纳米管。”杜平武说,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。   “如果通过类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅形纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。”杜平武说,这可能会成为制备高纯度碳纳米管的新方式。   性能及尺寸超越硅基材料   “碳纳米管具有完美的一维管式结构,碳原子以碳—碳共价键结合,形成自然界中最强的化学键之一,因此轴向具有很高的强度和韧性。此外六角平面蜂窝结构围成的管壁侧面没有悬挂键,所以碳纳米管具有稳定的化学特性。”杜平武说,碳纳米管优异的性能表现在电学、热学和光学等方面,具有超越传统的导电、导热特性等等。   2013年,斯坦福大学科学家制备了由平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”。近两年,碳纳米管电子器件的性能及尺寸又一次次被突破,势在超越并最终取代目前商用的硅基器件。   碳纳米管还可以制成透明导电的薄膜,用作触摸屏的替代材料。且原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制。碳纳米管触摸屏具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以做成曲面,已在可穿戴装置、智能家具等领域得到应用。   碳纳米管还给物理学家提供了研究毛细现象的最细毛细管,给化学家提供了进行纳米化学反应的最细试管,科学家甚至研制出能称量单个原子的“纳米秤”。“我国在碳纳米管材料的基础研究方面处于领先地位,结构均一性的控制方法和理论不断创新,控制指标也逐年刷新。”杜平武说。
  • 《国家纳米科学中心金纳米棒材料组装研究取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:万勇
    • 发布时间:2017-12-07
    •   微纳加工方法主要分为“自上而下”和“自下而上”两种基本类型。前者是目前广泛应用于微纳加工领域的主流技术,但其由于受到物理极限的制约,一般加工分辨率在几十纳米量级上。后者则可在更小的尺度(包括分子尺度)上实现加工,被认为是一种突破物理限制的有效途径。然而,“自下而上”的组装方法由于科学认知和实验技术的不足,导致其在低缺陷、大面积、组装过程、组装结构等四个方面存在持续的挑战。相对而言,组装结构面临的障碍最大。这其中,一个最重要问题是如何实现组装对称性的可调控。组装对称性可调控对于组装结构多样性和组装体功能的丰富无疑是非常重要的。一般而言,由于形状互补性,组装结构对称性受到组装单元的形貌限制,四方单元易于形成四方密排结构,而球型则形成六方密排对称结构。由于在组装动力学过程中组装单元间的复杂力平衡和热力学最小原理的要求,打破形状依赖的组装结构对称性似乎是一个难以实现的目标。   国家纳米科学中心和中国科学院纳米科学卓越中心刘前课题组与吴晓春课题组、邓珂课题组以及美国科罗拉多大学Ivan I. Smalyukh课题组合作,通过引入一种新概念的主导控制力,首次实现了纳米金棒的四方对称性组装,一举突破了一直以来八面体金棒只能是形状依赖的六方对称结构的实验结果。这一结果也在八面体银和钯纳米棒上得到了实现,展示了这种方法的普适性。多尺度模拟计算进一步揭示这种控制力主导了非形状依赖的组装过程,并很好的解释了四方对称比六方对称具有更高的热力学稳定性的实验结果。这种方法开辟了一条打破形状依赖组装对称性的新途径,为组装结构的多样性和纳米材料组装结构的可设计、可控提供了了有力工具,将为推动纳米组装技术的进步提供助力。   该工作是刘前课题组前期研究(Nanoscale, 2014, 6, 3064;Langmuir 2013, 29, 6232;Chem. Commun., 2012, 48, 2128; Langmuir 2011, 27, 11394)的进一步拓展,已于 11月10 日在线发表在《自然·通讯》(Nature Communications 2017, 10, 13743)。文章链接:https://www.nature.com/articles/s41467-017-01111-4。该工作获得了国家重点研发计划纳米科技重点专项、中国科学院战略性先导科技专项A、国家基金委和欧盟项目的支持。