《Cell | 正向选择 CRISPR 筛选揭示了一种寡糖基转移酶中的药物口袋,该酶是向 NF-κB 发送炎症信号所必需的》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-04-29
  • 2024年4月25日,丹娜-法伯癌症研究所和哈佛医学院等机构的研究人员在Cell杂志发表题为Positive selection CRISPR screens reveal a druggable pocket in an oligosaccharyltransferase required for inflammatory signaling to NF-κB的文章。

    核因子κB(NF-κB)在多种疾病中发挥作用。许多炎症信号,如循环中的脂多糖(LPS),会通过特定受体激活 NF-κB。通过对表达 NF-κB 驱动自杀基因的 LPS 处理细胞进行全基因组 CRISPR-Cas9 筛选,研究人员发现 LPS 受体 Toll 样受体 4(TLR4)的 N-糖基化和细胞表面定位特别依赖于寡糖基转移酶复合物 OST-A。工具化合物 NGI-1 可抑制体内的 OST 复合物,但其潜在的分子机制仍然未知。

    研究人员通过 CRISPR 碱基编辑器筛选出了 OST-A 催化亚基 STT3A 的 NGI-1 抗性变体。这些变体与冷冻电镜研究相结合,揭示了 NGI-1 与 STT3A 的催化位点结合,并在该位点捕获了一分子供体底物 dolichyl-PP-GlcNAc2-Man9-Glc3 ,表明这是一种非竞争性抑制机制。该研究结果为 STT3A 特异性抑制剂的开发提供了理论依据并迈出了第一步,同时也说明了同时进行的碱基编辑器和结构研究在确定药物作用机制方面的威力。

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(24)00313-1
相关报告
  • 《分子植物卓越中心揭示水稻糖基转移酶影响代谢流进而调控粒型与抗逆的新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-06-19
    •   5月26日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院分子植物科学卓越创新中心林鸿宣研究组的研究成果,题为UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice。该研究工作报道了水稻糖基转移酶影响代谢流重新定向,进而同时调控水稻籽粒大小与抗逆性的新机制。   粒型是影响水稻产量的主要因素之一,同时水稻产量经常遭受干旱、高盐和高温等非生物胁迫的影响,如何提高水稻产量的同时增强水稻抗逆性是对科研人员和育种工作者的挑战课题。植物需不断调整体内代谢流以适应不同发育时期和生长环境,但在作物中对此了解甚少。   林鸿宣研究组通过图位克隆的方法定位克隆到一个同时调控水稻粒型与抗逆性的QTL GSA1 (Grain Size and Abiotic stress tolerance 1)。GSA1是粒型与抗逆性的正向调控因子,过表达GSA1增加水稻籽粒大小和粒重,同时提高水稻对高盐、干旱及高温的抗性。核苷酸多态性分析显示,GSA1在非洲野生稻驯化为非洲栽培稻以及亚洲野生稻驯化为粳稻的过程中受到人工选择。GSA1编码一个水稻糖基转移酶UGT83A1,体外实验证实GSA1具有广谱的糖基转移酶活性,以尿苷二磷酸(Uridine diphosphate,UDP)为糖基供体,以山奈酚、柚皮素及槲皮素等黄酮类代谢物为糖基转移受体,调控水稻体内黄酮糖苷谱,间接影响黄酮介导的生长素极性运输及生长素相关基因表达量,最终通过影响细胞分裂和细胞增殖而调控水稻粒型。同时GSA1也可以将松柏醇、对香豆醇及芥子醇等木质素单体作为糖基转移受体,进而调控木质素含量,这可能也是调控水稻粒型的原因。GSA1CG14(非洲稻位点)中位于Plant Secondary Product Glycosyltransferase (PSPG)保守结构域内的氨基酸变异A349T导致GSA1CG14结合UDP的能力比GSA1WYJ(亚洲稻位点)明显下降,糖基转移酶活性显著降低,而位于非保守域的氨基酸变异A246V则对底物结合及糖基转移酶活性无影响。木质素合成途径以及黄酮代谢途径是苯丙烷通路的重要分支。进一步研究表明,逆境胁迫下GSA1参与代谢流从木质素合成途径重新定向于黄酮糖苷合成途径,木质素合成途径下调而黄酮糖苷包括花青素合成相关通路上调,导致水稻抗逆性的增强。过量表达GSA1WYJ显著增加逆境胁迫下黄酮糖苷及花青素的含量,引起水稻抗逆性增强。而敲除GSA1造成逆境下代谢流重新定向的紊乱,黄酮糖苷合成受阻,水稻抗逆性减弱。   该研究揭示了糖基转移酶通过调控代谢流重新定向进而同时调控水稻粒型与抗逆性的新机制,为培育高产高抗作物新品种提供了有价值的基因资源。   林鸿宣研究组博士后董乃乾为论文第一作者,单军祥、叶汪薇等对该工作做出了贡献,该研究得到分子植物卓越中心研究员王勇、博士孙雨伟的大力帮助。该工作获得科技部、中国科学院、国家自然科学基金的资助。
  • 《Nature:揭示细菌中的泛素转移酶启动抗病毒免疫反应机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-22
    • 在一项新的研究中,来自美国科罗拉多大学博尔德分校的研究人员发现当涉及到抵御入侵者时,细菌的运作方式与人类细胞极为相似,它们拥有开启和关闭免疫途径所需的相同核心分子机制。他们还揭示了这种共享的古老分子机制---一群称为泛素转移酶(泛素转移酶)的酶---是如何运作的。他们说,更好地了解并有可能重新编程这种分子机制,最终可能为治疗一系列人类疾病(从类风湿性关节炎和克罗恩病等自身免疫性疾病到帕金森病等神经退行性疾病)的新方法铺平道路。相关研究结果于2023年2月8日在线发表在Nature期刊上,论文标题为“An E1–E2 fusion protein primes antiviral immune signalling in bacteria”。 论文共同通讯作者、科罗拉多大学博尔德分校生物化学系助理教授Aaron Whiteley说,“这项新的研究表明,我们与细菌没有什么不同。通过研究这些细菌过程,我们可以学到很多关于人体如何发挥作用的知识。” 下一个CRISPR? 这项新的研究并不是第一次展示细菌可以教给人类的东西。越来越多的证据表明人类免疫系统的一部分可能起源于细菌,而且在植物和动物王国中,进化产生了更复杂的细菌抗病毒工具。 2020年,美国加利福尼亚大学伯克利分校生物化学家Jennifer Doudna因CRISPR获得了诺贝尔奖,这是一种基因编辑工具。细菌利用CRISPR来对抗噬菌体。围绕CRISPR的讨论点燃了科学界对蛋白和酶在抗噬菌体免疫反应中所发挥的作用的新兴趣。 Whiteley说,“在过去的三到五年里,人们已意识到它不会随着CRISPR而结束。它的潜力是如此之大。” 进化史中的缺失环节 在这项新的研究中,Whiteley和论文共同第一作者Jane Coffin Childs与加州大学圣地亚哥分校的生物化学家合作,进一步了解一种名为cGAS(环状GMP-AMP合酶)的蛋白,人们以前已发现它既存在于人类中,也以一种更简单的形式存在于细菌中。 在细菌和人类中,当细胞感觉到病毒入侵时,cGAS对于启动下游防御至关重要。但是在细菌中是什么在调节这个过程,以前是不知道的。 Whiteley团队使用一种称为低温电镜的超高分辨率技术以及其他遗传和生物化学实验,近距离观察了cGAS在细菌中的进化前身的结构,并发现了细菌用来帮助cGAS保护细胞免受病毒攻击的额外蛋白。具体来说,他们发现细菌利用一种精简的泛素转移酶“一体化版本”来修饰它们的cGAS,其中泛素转移酶是一个复杂的酶集合,在人类中控制免疫信号转导和其他关键的细胞过程。 Ledvina说,由于细菌比人类细胞更容易进行基因操作和研究,这一发现为研究工作开辟了一个新的机会。“细菌中的泛素转移酶是我们了解这些蛋白进化史的一个缺失环节。” 对蛋白进行编辑 这项新的研究还揭示了这种分子机制是如何起作用的,确定了两种关键成分---称为Cap2(CD-NTase-associated protein 2)和Cap3(CD-NTase-associated protein 2)的蛋白---分别作为cGAS反应的开启开关和关闭开关。 Whiteley解释说,除了在免疫反应中发挥关键作用外,泛素在人类中还可以作为一种细胞垃圾的标记,引导多余或旧的蛋白被分解和破坏。当这个系统由于突变而失灵时,蛋白就会堆积起来,帕金森病等疾病就会发生。 这些作者强调,还需要进行更多的研究,但这一发现打开了令人兴奋的科学大门。就像科学家们将古老的细菌防御系统CRISPR改编成可以剪除DNA突变的剪刀式生物技术一样,Whiteley相信这种细菌泛素转移酶的一部分---Cap3,即“关闭开关”---最终可能经编程后对缺陷的蛋白进行编辑并治疗人类疾病。 Whiteley说,“我们对泛素转移酶及其进化过程了解得越多,科学界就越有能力在治疗上靶向这些蛋白。这项新的研究提供了非常明确的证据表明我们体内对维持细胞至关重要的分子机制起源于细菌,做着一些非常令人兴奋的事情。” 参考资料: Hannah E. Ledvina et al. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. Nature, 2023, doi:10.1038/s41586-022-05647-4.