《10月12日_SARS-CoV-2中和抗体结构为开发治疗策略提供参考》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-11-16
  • 10月12日,Nature期刊发表题为“SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies”的文章。文章指出,COVID-19大流行带来了紧迫的健康危机。靶向SARS-CoV-2刺突蛋白的宿主ACE2受体结合域(RBD)的人中和抗体(hNAbs)显示出治疗前景,目前正在对其进行临床评估。为了确定SARS-CoV-2中和的结构相关性,研究人员分析了8个不同的COVID-19 hNAbs5与SARS-CoV-2刺突蛋白三聚体或RBD复合物的新结构。通过结构比较可以将其分为几类:(1)具有短CDRH3s的VH3-53 hNAbs,它阻断ACE2并且仅与“向上”RBDs结合;(2)阻断ACE2的hNAbs,既与“向上”和“向下”RBDs结合,又能与相邻的RBDs接触;(3)在ACE2位点外结合并识别“向上”和“向下”RBDs的hNAbs;(4)先前描述的不阻断ACE2并仅结合“向上”RBDs的抗体。第2类包括四个hNAbs,其表位桥接RBDs,包括一个VH3-53 hNAb,该VH3-53 hNAb使用带有疏水尖端的长CDRH3在相邻的“向下”RBD之间桥接,从而将刺突蛋白锁定为闭合构象。表位/互补位图谱显示,与宿主来源的N-聚糖的相互作用很少,抗体体细胞超突变对表位接触的贡献很小。亲和力测量和3D中自然发生的和体外选择的刺突蛋白突变体的图谱提供了对SARS-CoV-2从感染诱导的或治疗性递送的抗体中逃逸的可能性的深入了解。这些分类和结构分析为将当前和未来的针对人RBD的抗体分配到类别中、评估亲和效果、建议临床使用的组合提供了规则,并提供了对SARS-CoV-2的免疫反应的见解。
    来源:https://www.nature.com/articles/s41586-020-2852-1

  • 原文来源:https://www.nature.com/articles/s41586-020-2852-1
相关报告
  • 《SARS-CoV-2中和抗体结构为治疗策略提供依据》

    • 来源专题:新发突发疾病(新型冠状病毒肺炎)
    • 编译者:蒋君
    • 发布时间:2020-11-09
    • 2019冠状病毒病(COVID-19)大流行提出了紧急卫生危机。靶向严重急性呼吸综合征冠状病毒-2(SARS-CoV的-2)刺突蛋白的宿主ACE2受体结合结构域(RBD)人中和抗体1,2,3,4,5显示承诺治疗并且正在临床评价6,7,8。为了鉴定SARS-CoV-2中和的结构相关性,我们解决了不同COVID-19人中和抗体的八个新结构5与SARS-CoV-2尖峰三聚体或RBD配合使用。结构上的比较使我们可以将抗体分类:(1)中和由VH3-53基因片段编码的抗体,其CDRH3短环阻断ACE2,仅与“向上” RBD结合;(2)结合ACE2的中和抗体,可同时结合向上和向下的RBD,并且可以接触相邻的RBD;(3)中和抗体,该抗体结合在ACE2位点之外并识别上下RBD。(4)先前描述的不阻断ACE2且仅结合RBD 9的抗体9。第2类包含四种具有桥接RBD的表位的中和抗体,包括VH3-53抗体,该抗体使用带有疏水尖端的长CDRH3在相邻的向下RBD之间桥接,从而将刺突锁定为闭合构象。表位和互补位作图显示与宿主来源的N几乎没有相互作用-聚糖和抗体体细胞超突变对表位接触的微小贡献。亲和力测量和3D自然选择和体外选择的刺突突变的作图提供了SARS-CoV-2从感染过程中诱发的抗体或治疗性抗体中逃脱的潜力的见识。这些分类和结构分析提供了将当前和将来的针对人RBD的抗体分配到类别中,评估亲和力效果并建议用于临床用途的组合的规则,并提供了针对SARS-CoV-2的免疫反应的见解。
  • 《Nature:详细绘制新冠病毒中和抗体的结合位点,有助开发新的治疗策略》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-10-20
    • 新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。在一项新的研究中,来自美国加州理工学院等研究机构的研究人员描述了针对这种病毒的多种抗体的特征,并鉴定出那些最有效地中和这种病毒的抗体。抗体是人体为应对感染而产生的蛋白。最终,他们希望像这项研究中描述的强效抗体可以作为治疗或预防COVID-19的药物。相关研究结果于2020年10月12日在线发表在Nature期刊上,论文标题为“SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies”。论文通讯作者为加州理工学院生物学与生物工程系的Pamela Björkman教授。论文第一作者为加州理工学院生物学与生物工程系博士后研究员Christopher Barnes。 一个人可以产生数百或数千种不同的抗体变体来对抗包括病毒在内的任何病原体或外来物,这会导致个人和人群中的抗体具有广泛的多样性。有些抗体比其他抗体更能阻止病毒入侵。想一想一个拳击手与对手交手的众多方式:打脸的一拳比打腿的一拳更有可能击倒对手。当一种抗体有效地使得病毒无法感染细胞---可以说是把它击倒了--这种抗体就是所谓的“中和抗体”。 Barnes说,“理想的治疗方法将是不同抗体的组合使用,这些抗体以不同但仍然有效的方式攻击病毒。有了抗体的组合,病毒就不太可能进化出逃避它们的方法。” 自COVID-19大流行开始以来,Barnes和Björkman一直在研究从这种疾病中恢复的人体的抗体,以寻找那些最具中和力的抗体。他们利用结构生物学技术对SARS-CoV-2蛋白和人体抗体之间的相互作用进行成像。 每个SARS-CoV-2病毒的表面具有大而尖的蛋白结构,从横截面上看,它就像一个带光线的卡通太阳。三个受体结合结构域(RBD)位于每个所谓的刺突蛋白(S蛋白)的尖端。一个RBD可以从刺突蛋白上的 “向下(down)”位置翻转到 “向上(up)”位置,从而暴露了一个称为受体结合基序(receptor-binding motif)的隐藏位点。 SARS-CoV-2与人体细胞结合的靶点称为血管紧张素转换酶2(ACE2)受体。通常情况下,这种细胞表面受体的功能是调节血压,但SARS-CoV-2却利用它作为进入肺部和其他器官细胞的手段。这个受体结合基序就像一个抓钩,抓住ACE2受体。 一旦这种病毒附着在细胞上,它就能与细胞膜融合并侵入细胞,从而将被感染的细胞变成制造新病毒的工厂。因此,一种能够阻断受体结合基序或使用不同机制阻止融合的抗体将非常有效地阻止这种病毒进入细胞。 Barnes和他的团队旨在发现抗体如何与刺突蛋白中的处于开放(向上)和封闭(向下)构象中的RBD相互作用。在此前发表在Cell期刊上的一篇论文(Cell, 2020, doi:10.1016/j.cell.2020.06.025)中,他们与美国洛克菲勒大学的Michel Nussenzweig实验室合作,研究了从COVID-19康复者身上收集到的抗体(所谓的单克隆抗体)。利用Nussenzweig实验室发现的一系列单克隆抗体(下称单抗),Barnes团队使用了能够在单原子分辨率下对蛋白进行成像的显微镜技术,精确地发现了各种抗体与SARS-CoV-2刺突蛋白结合的位置。 在这项新的研究中,Barnes与Björkman实验室的研究生和加州理工学院其他实验室的显微学家合作,快速解析出8种新的结构,展示了针对SARS-CoV-2的中和抗体如何阻断刺突蛋白上的RBD以阻止这种病毒进入细胞。他们发现了多种识别模式:一些抗体结合具有三个 “向上”RBD的刺突蛋白,一些抗体与同一个刺突蛋白上的 “向下”和“向下”RBD结合,一些抗体只与 “向下”RBD结合。 通过对这些结构的分析,这些研究人员提出了四类抗RBD抗体,基于它们是结合“向上”RBD、结合“向下”RBD,还是同时结合这种两种构象的RBD;它们的结合是否与ACE2的结合位点重叠;以及其他标准,比如它们的效力和源自特定抗体基因家族。从这些结构中,他们提出了不同的病毒中和机制。 比如,他们发现了一种特别有趣的抗体:它能同时与相邻的RBD结合,让三个RBD都保持在“向下”构象,从而将刺突蛋白锁定在一个无法暴露出“抓钩”的构象中。 Björkman说,“首先,我想说的是,看到我们实验室和其他加州理工学院实验室在研究这些抗体方面的高度合作和协作,我是多么高兴。我们认为这些结构将促进选择最有效的单抗组合,用于治疗COVID-19或预防高危人群的病毒感染。” 她补充道,“此外,了解这些抗体的结构可以促进设计与RBD更紧密结合的抗体,从而提高它们的疗效,降低治疗所需的剂量。最后,绘制这些抗体的结合位置可提供必要信息,以便基于结构设计引起最有效的中和抗体产生的疫苗。” 论文共同作者Claudia Jette说,“有机会参与一个与影响整个世界的健康危机如此直接相关的项目真的很棒。这也是我参与过的合作性最强的项目。能和我实验室里的优秀人才一起做这样的事情,绝对是一件很开心的事情。” Barnes说,“我们的研究为未来探究从康复的COVID-19患者中提取出的中和抗体奠定了基础。通过与洛克菲勒大学的Nussenzweig团队合作,我们如今正致力于描述从相同供者中分离出的抗体的瞬时变化。我们希望我们在未来开展的研究将有助于我们了解长期免受SARS-CoV-2感染的潜力。”