《探索 | 南科大孙小卫团队在AR光波导技术领域取得突破性进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-03-03
  • 近日,南方科技大学纳米科学与应用研究院、电子与电气工程系孙小卫讲席教授团队在国际学术期刊 Light: Science & Applications 上发表题为“An achromatic

    metasurface waveguide for augmented reality displays”的研究论文。该研究提出了一种创新的超表面光波导技术,孙小卫团队首次解决增强现实(AR)色差问题,为AR显示技术的发展开辟了新的方向。


    图1 超表面光波导AR显示系统示意图

    在AR技术的演进过程中,显示系统始终面临着“更清晰”与“更轻薄”的双重挑战。从早期的反射镜显示到如今的光波导显示,技术的每一次迭代都在向这一目标迈进。衍射光波导因其超薄特性,已成为 HoloLens、Meta Orion 等主流AR设备的核心技术。然而,色散效应导致的图像失真问题一直是该领域的技术瓶颈。

    孙小卫团队通过创新的逆向设计方法,提出了一种全新的解决方案:利用超表面耦合器和单层高折射率光波导,成功攻克了色差难题。超表面是一种由人工纳米结构组成的光学元件,能够精确调控光的相位、振幅和偏振特性。研究团队通过优化超表面耦合器的几何结构设计,确保RGB三色光在出射时具有一致的偏转角度与耦合效率,从而有效消除了色差问题。

    图2 传统光波导与超表面光波导的对比:(a)传统光波导通过一阶衍射将光耦合到光波导中,导致波长依赖的偏转角度;(b)传统光波导的K矢量图,重叠的全彩视场角较小;(c)超表面光波导通过高阶衍射实现无色差的光耦合;(d)超表面光波导的K矢量图,具有更大的全彩视场角

    这一技术突破不仅解决了传统耦合器件的色差瓶颈,还为全彩光波导显示提供了全新的技术路径。超表面波导技术具备多项显著优势:单层结构简化了制造工艺,高折射率设计扩展了视场角,优化的耦合效率确保了全彩显示效果。这些特点使其在下一代AR设备中展现出巨大的应用潜力,标志着AR显示技术即将迈入一个全新的发展阶段。

    图3 AR全彩显示效果


  • 原文来源:https://www.nature.com/articles/s41377-025-01761-w
相关报告
  • 《南科大研究团队在量子时间关联探测领域取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-03-26
    • 近日,南方科技大学物理系副教授鲁大为团队与清华大学博士研究生刘振寰、法国国家科学研究中心-新加坡企业与技术园区研究员刘祥境合作在量子时间关联探测领域取得进展,利用核磁共振系综测量特性高效探测量子系统的时间关联。 量子关联是量子力学的一项显著特征,使量子系统与经典宏观世界呈现出本质区别。量子关联可分为空间量子关联和时间量子关联。其中,广为人知的量子纠缠属于空间量子关联。相关研究人员对量子纠缠的深入研究不仅加深了人类对量子世界的理解,还为量子通信、量子计算、量子传感等前沿技术的发展提供了关键工具和资源。近年来,这些研究已扩展至时间维度,即不同时间节点间的量子关联特性,并探索其在量子技术中的潜在应用。 时间关联性这一概念早在量子力学建立初期就引起了量子力学先驱者的关注。著名学者 Leggett 和 Garg 于1985年提出了著名的 Leggett-Garg 不等式后,其在量子信息科学领域的深入研究和广泛应用得以系统性地展开。 Leggett-Garg 不等式用于检验一个物理系统是否满足“宏观现实论(Macroscopic Realism)”。宏观现实论由两个基本假设组成: (1)宏观现实性(Macroscopic Realism):一个宏观物体具有两个或多个宏观上不同的状态,在任意给定时刻,它都处于其中的某个确定状态; (2)无侵扰测量(Noninvasive Measurement):原则上可以测量系统的状态,而不会对其当前状态或后续动力学演化产生任何影响。 在经典物理中,系统应当满足该不等式。然而,在量子力学中,由于测量的投影效应(波函数塌缩)和量子相干性,某些演化过程可以违反 Leggett-Garg 不等式。这表明,量子系统无法用经典的宏观现实论进行描述。 量子时间关联的研究不仅揭示了物理世界的本质,相关研究人员也已提出相关理论方案使其可应用于量子技术中。例如,量子时间关联可用于量子密钥分发,环境维度估计、量子信道容量估计、量子计时系统的稳定性分析及量子因果推断等等前沿领域。然而,在当前实验体系中,针对量子时间关联的高效探测方法与技术工具仍存在显著不足。 图1(a) 通过依次测量量子通道前后的量子系统来构建PDO示意图;(b) 单一时间切片“虚拟”制备PDO的量子线路图,之后通过随机测量估计其二阶矩 针对这一问题,鲁大为团队及其合作者成功设计并实验验证了一种高效探测量子时间关联的新方法。该方法基于赝密度算符(Pseudo Density Operator, PDO)理论框架——该算符将密度矩阵推广至时间维度。相较于经典的密度矩阵,PDO的显著特征在于允许存在负本征值,这些负值反映了量子系统的时间关联。因此,通过观测负本征值即可确认时间关联的存在。传统PDO时间关联探测需依赖层析表征技术,但该方案不仅需要消耗大量量子资源,还显著提升了实验操作复杂度。为突破这一局限,研究团队创新性地将准概率分解理论与随机测量技术相结合,构建出可在单一时间节点“虚拟”制备双时间点PDO的量子线路,并通过随机测量获取其二阶统计矩,最终实现PDO负本征值的高效估计。 图2 系综NMR系统:样品中的大量全同分子都参与了实验过程,最后对所有分子进行平均统计测量 该时间关联探测方法有如下优点:(1)虽然实验基于对赝密度矩阵算符二阶矩的测量,但只需对单份量子系统进行操作,减小了量子设备的规模;(2) 所需的不同测量基数量与系统规模无关,这一特性适用于采用系综测量(ensemble-average measurement)的方法,如核磁共振(NMR)、冷原子系统以及金刚石中的氮-空位中心等体系。在这些实验平台中,仅使用单一测量基即可执行指数级投影测量,能更高效地完成实验。团队利用核磁共振(NMR)平台进行的实验不仅验证了理论预期,更展示了该方法在热力学量子系统中的可行性与高精度表现。 图3 (a)随机测量前实验验证“虚拟”制备PDO的可行性及准确性;(b-c) PDO的本征值分析;(d-e) 通过随机测量估计PDO的二阶矩 此外,研究表明,该成果有望启发更高效的量子时间关联探测方法,并在广受关注的量子技术各个领域发挥重要作用。实验中,NMR 系统在测量密度矩阵对角元方面展现出的卓越能力,也为进一步探索其他量子试验技术提供了宝贵的启示。
  • 《上海交大团队在量子精密测量领域取得突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-06-02
    • 上海交通大学物理与天文学院及李政道研究所张卫平教授团队与华东师范大学陈丽清、袁春华教授合作在量子精密测量研究方面取得重要进展,实现了高损耗下的量子干涉仪噪声压缩保护。 该团队在干涉仪路径损耗高达96%的情况下,依然展示了量子优势,实现了相位测量灵敏度突破标准量子极限。该方法的重要创新在于通过相干激光与量子压缩资源的优化分配,使得干涉仪抗损耗能力与光量子噪声压缩的量子优势同时得以保持,为发展损耗兼容、噪声抑制的可实用量子光学干涉技术提供了新方法。 相关研究成果近来以“Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation”为题发表在《物理评论快报》(Physical Review Letters)上。 光学干涉仪作为高精度相位测量的重要工具,已广泛应用于科学探索、工业与**领域。激光的发明,光的相干性导致了光学干涉仪的革命性发展。然而,激光起源于真空放大,光子统计展现泊松分布,其光子涨落使得激光干涉仪的相位灵敏度受限于标准量子极限(SQL)。突破激光干涉仪的SQL成为了量子光学与量子计量学领域的重大科学问题。 利用量子光学技术能够改变光场的泊松分布,产生光的压缩态。将光的压缩态注入激光干涉仪中,可实现对相位测量的标准量子极限突破。然而,光的压缩态非常脆弱,极易受到外界环境损耗的退相干性破坏,从而不能有效地展现其量子优势。在实际应用中,激光干涉仪不可避免受环境及元器件的损耗影响,导致这种量子压缩技术无法有效发挥量子增强作用。在干涉仪中怎样保护光的压缩特性,是量子光学领域长期关注的重要问题。 针对这一问题,该项研究利用原子偏振自旋转原理产生的光压缩态注入到激光线性干涉仪中,通过调节激光与压缩光的混合配比,将更多的激光注入损耗大的干涉臂,实现相位敏感测量。同时,在损耗小的干涉臂保留更多的压缩光,保护量子噪声压缩特性不被损耗破坏,从而实现一种高灵敏、低噪声、损耗兼容为一体的量子干涉新技术。 该项工作获得了科技部、国家自然科学基金委、上海市科委与发改委的资助。 资源优化的量子干涉仪实现量子噪声压缩保护原理